
Motivation
Proof of Necessary Work

Proof of Necessary Work
Using Proof of Work to Verify State

Assimakis Kattis & Joseph Bonneau

New York University

May 9th 2019

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 1 / 22

Motivation
Proof of Necessary Work

A Problem of Size
Bitcoin Scaling Limitations

Blockchain size increases linearly over time
New clients require lots of brandwith & computation to join

Inefficient : All new clients need to do the same verification
work to join the network from the beginning

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 2 / 22

Motivation
Proof of Necessary Work

Our Contributions
Proof of Necessary Work

Proof of Necessary Work : Use PoW to verify transactions

1 Allow light clients to verify state with minimal processing
2 Generate proofs ‘for free’ through PoW

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 3 / 22

Motivation
Proof of Necessary Work

Design Challenge
Proofs of State Validity

Important results from CS Theory :

1 There exist ‘small’ proofs for any NP statement
2 Such proofs can verify previous proofs efficiently

Need proofs of state validity that :
1 can verify correctness of the whole chain
2 are small enough to add to the blockchain
3 can be checked with minimal resources

Idea : Use recursive SNARKs !

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 4 / 22

Motivation
Proof of Necessary Work

Proofs of State Validity
Succinct Blockchain Instantiation

Bitcoin naturally fits Incrementally Verifiable Computation

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 5 / 22

Motivation
Proof of Necessary Work

Prototype Design

Account-based prototype with simple payment functionality

Similar but not equivalent to Bitcoin :

1 No script or UTXOs
2 Doesn’t support MULTISIG or arbitrary transaction types

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 6 / 22

Motivation
Proof of Necessary Work

Proofs of State Validity
Implementation Results

Succinct blockchain prototype results

Benchmark : AWS ra5.2xlarge with 8 cores and 64GB of RAM

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 7 / 22

Motivation
Proof of Necessary Work

What did we achieve ?

Our prototype :

produces block headers of size < 500 bytes for any number
of transactions per block
allows stateless clients to verify a block in < 60ms
can achieve throughput of 100 tx/block using libsnark

Problem : The proofs take a long time to generate

Idea : Create them as part of the PoW process !

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 8 / 22

Motivation
Proof of Necessary Work

PoW from Proof Generation
Initial Approach

Generate π and accept if H(π) ≤ d, repeat otherwise

Need to add a random nonce to the proof every iteration

Nonce is randomly sampled, changing π
Probability of success is exponentially distributed

Problem : We can change n without recomputing all of π

Process favors returns to scale, leading to centralization !

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 9 / 22

Motivation
Proof of Necessary Work

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 10 / 22

Motivation
Proof of Necessary Work

Modelling Proof Generation

Need to ensure our predicate is ‘hard’ to solve in general

We model this using a ‘hardness’ oracle O
O simulates hard computations used to generate π
Prover has access to O but can reuse previous information

In current succinct SNARK implementations, O provides access
to modular exponentiation in some group G

Reduces to hardness in the Generic Group Model (GGM) !

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 11 / 22

Motivation
Proof of Necessary Work

Formalizing the Model

Definition (ε-Hardness)

For ` ∈ poly(λ) and length λ inputs, fO is ε-hard if ∀A
performing less than (1− ε)N` queries to oracle O, where N
number of queries required for one evaluation of fO, the
following is negligible in λ :

Pr

[
∀i ∈ [`], πi = fO(ai) {πi, ai}`i=1 ← A(1λ)

∀i, j ∈ [`], ai 6= aj ⇔ i 6= j

]

Intuition : A large prover only gets an ε advantage from
previous computation when generating proofs

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 12 / 22

Motivation
Proof of Necessary Work

Committing to the Nonce
Leveling the Playing Field

We hope to solve this by committing to the nonce in the proof

Valid blocks now a (sensitive) function of n
Changing any input leads to an invalid configuration
Prevents previous proofs from inducing speedups

Computing proofs with random n prevents returns to scale

Result : Miners have to compute the whole proof

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 13 / 22

Motivation
Proof of Necessary Work

Adding Nonce to State
Altering Merkle Computations

Account-based models keep state in a Merkle tree :

1 Checks old Merkle paths
2 Computes new Merkle paths
3 Checks that signature and amounts are valid

Idea #1 : Link state and nonce through a ‘seed’ parameter :
ρ = H(n|state). Requires only one verification of a PRF H

Result : Altering any part of the input means a new valid ρ is
required, which is unpredictable by the security of H

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 14 / 22

Motivation
Proof of Necessary Work

Creating Hard Predicates

State verification happens without the seed. Most computation
(∼ 97%) in current account-based models verify Merkle paths

Problem : This only requires access to state ! An adversary can
reuse work as ρ doesn’t alter the vast majority of computation

Goal : Alter predicate to embed ρ in the verification process

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 15 / 22

Motivation
Proof of Necessary Work

Strawman : Insert n in every updated leaf. New Merkle paths
then change unpredictably as a function of the nonce

If we could inject our nonce in all Merkle paths, would be done

Problem : We only alter half of them ! Gives an ε ≈ 1/2

New Idea : Modify hash function by ‘cloaking’ it with ρ

Design Challenge : Modify our hash function to use ρ ‘almost
everywhere’, while outputting the same result as before

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 16 / 22

Motivation
Proof of Necessary Work

Cloaking the Pedersen Hash

For generators {gi}ni=1 in Z∗p, an n-bit Pedersen hash is :

H(x) =
n∏
i=1

gxii where xi the i-th bit of x

Idea # 2 : Compute H(ρ) and then calculate H′
(x⊕ ρ,H(ρ))

Can compute H(ρ) once per block. We can then use this with a
transformation H′ for which H′

(x⊕ ρ, ,H(ρ)) = H(x) for any x

Efficiency : Need to verify the XOR input. Adds O(n)
overhead for a ∼ 20% increase in proving time per H circuit

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 17 / 22

Motivation
Proof of Necessary Work

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 18 / 22

Motivation
Proof of Necessary Work

Putting it all together

We demonstrate how to cloak predicates with a nonce n,
making information reuse impossible

ε ≈ 3% with overhead ∼ 20% per block in our predicate when
implementing the previous ideas w/o optimization

For our 20 tx predicate, this means ε ≥ 0.3% if using SHA
ε ≥ |CPRF|/|CBlock| becomes our lower-bound

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 19 / 22

Motivation
Proof of Necessary Work

Proof Chains
Improving System Throughput

Discarding previous proofs is also wasteful - can we do better ?

We propose ‘Proof Chains’, an extension to PoNW that :

requires miners to build on top of previous proofs
submits all proofs in the chain when difficulty is satisfied

Result : Throughput increase ‘for free’ in our implementation

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 20 / 22

Motivation
Proof of Necessary Work

Related Work

An ideal proof system would :

1 require verifier succinctness (for efficient IVC),
2 also be trustless (no trusted setup),
3 and quantum-resistant.

Recent work is rapidly approaching these capabilities

Since our modifications are on the predicate layer, such
improvements are complementary to our approach

Remark : Our design uses IVC as a black box. Can switch in
any proof system that does IVC with the same guarantees

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 21 / 22

Motivation
Proof of Necessary Work

Future Work

We identify various areas for future work :

Generalize to arbitrary proof systems
Design cloaking properties for other (faster) hash functions
Extend to full Bitcoin functionality (soft fork ?)

Contact : kattis@cs.nyu.edu

Assimakis Kattis & Joseph Bonneau Proof of Necessary Work 22 / 22

	Motivation
	Proof of Necessary Work

