/ / """ . w - FAKULTAT FUR

TECHNISCHE '
| INFORMATIK

NIVERSHTAT
Q& SECURITY &
S P PRIVACY
C PrvAC

WIEN

—Vienna | Austria

A2L: Anonymous Atomic Locks for Scalability and
Interoperability in Payment-Channel Hubs

Erkan Tairi!, Pedro Moreno-Sanchez!, Matteo Maffei?
@erkantairi (@pedrorechez (@matteo_maffel

TU Vienna

Scaling Bitcoin
Tel Aviv, Sep12th 2019




Scalability Issues

» Decentralized data structure recording each
transaction in order to provide public verifiability

» Global consensus: everyone checks the whole
blockchain

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec




Scalability Solutions?

» On-chain (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain (use blockchain only for disputes)
e.g., Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) . (Ethereum)

Many other projects (Bolt, Perun, Liquidity Network...)



Scalability Solutions?

» On-chain (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain (use blockchain only for disputes)
e.g., Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) . (Ethereum)

Many other projects (Bolt, Perun, Liquidity Network...)



Background on
Payment Channels



101 Payment Channels



101 Payment Channels

» A protocol to perform payments off-chain between two
users



101 Payment Channels

» A protocol to perform payments off-chain between two
users

» Divided in three phases:

e Open channel: Deposit coins in the channel

e Analogy: get a gift card



101 Payment Channels

» A protocol to perform payments off-chain between two
users

» Divided in three phases:
e Open channel: Deposit coins in the channel
e Analogy: get a gift card

e Pay: Send coins off-chain by exchanging
authenticated messages in a peer-to-peer fashion

e Analogy: pay with the gift card



101 Payment Channels

» A protocol to perform payments off-chain between two
users

» Divided in three phases:
e Open channel: Deposit coins in the channel
e Analogy: get a gift card

e Pay: Send coins off-chain by exchanging
authenticated messages in a peer-to-peer fashion

e Analogy: pay with the gift card

e Close channel: Redeem coins according to the last
agreed state (or dispute resolution)

e Analogy: redeem remaining coins at the gift card



101 Payment Channels

» Key point for scalability:
e Only open and close channel are on-chain
e Rest are off-chain operations

» For more technical description:

e See talk: Pedro Moreno-Sanchez, “Atomic Multi-
Channel Updates with Constant Collateral in Bitcoin-
Compatible Payment-Channel Networks”,
ScalingBitcoin 2019



Payment Channel Hubs (PCHs)

One cannot open channels with everyone...
— exploit gateway channels!

e

=Y : K

Bob a
Gateway

{) mEmm 3

Alice Dave

s




Payment Channel Hubs (PCHs)

One cannot open channels with everyone...
— exploit gateway channels!

e

=Y : K

Bob a

Gateway

{) mEmm 3

Alice Dave
Send
1 BTC to Carol

s




Payment Channel Hubs (PCHs)

il aN--] : Py
Alice Carol
— Gateway
aend1BD




Payment Channel Hubs (PCHs)

i) mom Sm ..

Alice
— Gateway Carol
1. Send1BD
b - .. @
da b

Carol

2. Forward 1 BTC to
Carol

Gateway




Payment Channel Hubs (PCHs)

"] am

ﬂ >tee (L @
Alice

Carol
- Gateway
1. Send 1 BTC + fee
to gateway
{i z EEEREYY
a
Alice /\ Gateway — Carol
g A 2. Forward 1 BTC to

Fee acts as an incentive for
gateway to participate in
the payment

. J

Carol




Security, Privacy

and Interoperability in PCHs

A’L: Anonymous Atomic Locks for Scalability and
Interoperability in Payment Channel Hubs

Erkan Tairi, Pedro Moreno-Sanchez and Matteo Maffei
TU Wien
{erkan.tairi,pedro.sanchez, matteo.maffei } @tuwien.ac.at

Abstract—The striking growth in cryptocurrencies is revealing
several scalability issues that go beyond the growing size of the
blockchain. Payment channel hubs (PCHs) constitute a promising
scalability solution by performing off-chain payments between
sender and receiver through an intermediary, called the tumbler.
While currently proposed PCHs provide security and privacy
guarantees against a malicious tumbler, they fall short of other
fundamental properties, such as interoperability and fungibility.

In this work, we present AZL, the first secure, privacy-
preserving, interoperable, and fungibility-preserving PCH. A°L
builds on a novel cryptographic primitive that realizes a three-
party protocol for conditional transactions, where the interme-
diary pays the receiver only if the latter solves a cryptographic
challenge with the help of the sender. We prove the security
and privacy guarantees of AZL in the Universal Composability
framework and present two provably secure instantiations based
on Schnorr and ECDSA signatures.

We implemented A?L and our evaluation shows that it
outperforms TumbleBit, the state-of-the-art PCH in terms of

simply agreeing on a new distribution of the coins locked in
the channel: the corresponding transactions are stored locally,
that is, off-chain. When the two users disagree on the current
redistribution or simply terminate their economical relation,
they submit an on-chain transaction that sends back the coins
to their owners according to the last agreed distribution of
coins, thereby closing the channel. Thus, payment channels
require only two on-chain transactions (i.e., open and close
channel), yet supporting arbitrarily many off-chain payments,
which significantly enhances the scalability of the underlying
blockchain.

The problem with this simple construction is that in order
to pay different people, a user should establish a channel
with each of them, which is computationally and financially
prohibitive, as this party would have to lock an amount of coins
proportional to the number of users she wants to transact with.

Un
Sub/h/:g
S/o
n



Security in PCHs: Atomicity

il mN- -] : Y
Alice
Gateway carol
1. Send1B'ID




Security in PCHs: Atomicity

R S - ..

Alice Carol
Gateway
1. Send 1 B'D
Sy -
da b

Gateway — Carol
2.Forward 1 BTC to
Carol

10



Security in PCHs: Atomicity

il aN--] : B
Alice
Gateway
1. Send 1 BTC + fee
to gateway
4 )

{) By w
da

Alice Gateway — Carol
2. Forward 1 BTC to
Carol

10



Security in PCHs: Atomicity

Should happen atomically

PN -1

Alice

Gateway
+ fee

1. Send 1 BTC
to gateway

Carol

Gateway
2. Forward 1 BTC to
Carol

10



Privacy in PCHs: Unlinkability




Privacy in PCHs: Unlinkability




Interoperability in PCHs

» Create a PCH payment protocol backwards compatible with
Bitcoin (and as many cryptocurrencies as possible)

» Not an easy task:
e Perun, Liquidity Network: Ethereum-based solutions
e BOLT: Requires opcodes not available in Bitcoin

e TeeChain: Requires trusted execution environment (e.g.,
intel SGX)

e Blind Swaps: Requires Schnorr signatures
e TumbleBit: Compatible with Bitcoin

e Requires HTLC: Not possible in cryptocurrencies
without scripting language (e.g., Monero)

e Efficiency can be improved

12



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il

(pka, ska) (pks, skg)

13



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il
(pka, ska) (pks, skg)
» Goals:

» Alice can create a "half-signature” that Bob can only
finish by knowing the adaptor skc

» If Bob finishes the signature, Alice learns skc

13



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il

txa: Alice pays 1 coin to Bob

(pka, ska) (pks, skg)

14



Our Approach: Building Block

» Based on adaptor signatures (AS)

il

(pka, ska)

Adaptor: (pkc, skc)

txa: Alice pays 1 coin to Bob

txa, ska

o

2Party AS

SkB

(Pks, sks)

OB

14



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il

txa: Alice pays 1 coin to Bob

14



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il

txa: Alice pays 1 coin to Bob

(PKa, ska) e (PKs, SkB)

o, skc o

14



Our Approach: Building Block

» Based on adaptor signatures (AS)

ﬂ Adaptor: (pkc, skc) ™
il

txa: Alice pays 1 coin to Bob

(PKa, ska) i eSS0 R _(pkB; sks)

Release

14



2Party AS: Instantiation

» See talk: Omer Shlomovits, “Threshold Scriptless
Scripts”, ScalingBitcoin 2019

» See talk: Andrew Poelstra, “"Workshop on Scriptless
Scripts”, ScalingBitcoin 2018

» More details, see paper: Malavolta et al., “Anonymous
Multi-Hop Locks for Blockchain Scalability and
Interoperability”, NDSS 2019. Constructions with:

e One-way homomorphic functions

e Schnorr signatures
e ECDSA (building on 2p-ECDSA of Lindell)

15



Our Approach: First Attempt

ﬂ Adaptor: pkc Adaptor: pkc W,
&l

(PKa, ska) (pke, ska, skc) (Pks, sks)

16



Our Approach: First Attempt

ﬂ Adaptor: pkc Adaptor: pkc W,
&l

(PKa, ska) (pke, ska, skc) (Pks, sks)

2Party AS 2Party AS

16



Our Approach: First Attempt

(Pka, ska)

2Party AS

(pka, skg, skc)

txg, ska

>

ﬂ Adaptor: pkc & Adaptor: pkc

2Party AS

16



Our Approach: First Attempt

ﬂ Adaptor: pkc Adaptor: pkc W,
&l

(PKa, ska) (pke, ska, skc) (Pks, sks)

txg, ska sks
> <

txa, ska ske

2Party AS 2Party AS

16



Our Approach: First Attempt

ﬂ Adaptor: pkc Adaptor: pkc W,
&l

(PKa, ska) (pk, ske, skc ) (Pks, sks)
txg, ska skg
> - -
txa, ska skg
> « -
2Party AS ’ 2Party AS
skc

o, skc o

16



Our Approach: First Attempt

ﬂ Adaptor: pkc & Adaptor: pkc

(Pka, ska)

txa, ska

O, Skc

2Party AS

(pka, skg, skc)

txg, ska

O, Skc

>

2Party AS




O, Skc

2Party AS

Our Approach: First Attempt

|

. .
° &
[

O, Skc

2Party AS




Our Approach: First Attempt

" Adaptor: pkc | &

2Party AS

2Party AS

o, skc o




Privacy in PCHs: Unlinkability




Privacy in PCHs: Unlinkability




A2L: Protocol Overview

il

(pka, Ska, ra)

2Party AS

(pka, skg, skc)

Adaptor: pkc W,
&l

(pks, Sk, I's)

2Party AS

18



A2L: Protocol Overview

il

(pka, Ska, ra)

2Party AS

(pka, skg, skc)

txs, ske Ence(ske)
.

& Adaptor: pkc

r®
i

(pks, Skg, I's)

2Party AS

SkB
a

OB EnCG(Skc)
-

18



A2L: Protocol Overview

(pka, Ska, ra)

ﬂ Adaptor:
(PkC) rB * rA

2Party AS

(pka, skg, skc)

txs, ske Ence(ske)
.

& Adaptor: pkc

r®
i

(pks, Skg, I's)

2Party AS

SkB
-

OB EnCG(Skc)
-

18



il

A2L: Protocol Overview

(pka, Ska, ra)

Xa, SkA,

Encg(skc *
I's * rA)

<>

Adaptor:
(PkC) rB * rA

2Party AS

(pka, skg, skc)

SkG
-

txs, ske Ence(ske)
.

oc Encg(skc™ rg * ra)

<>

a Adaptor: pkc

e

(pks, Skg, I's)

2Party AS

SkB
-

OB EnCG(Skc)
-

18



il

A2L: Protocol Overview

(pka, Ska, ra)

Xa, SkA,

Encg(skc *
I's * rA)

O,

SKc*rrg * ra
<k

<>

2Party AS

Adaptor:
(PkC) rB * rA

(pka, skg, skc)

SkG

4,

txs, ske Ence(ske)
.

oc Encg(skc™ rg * ra)

4,

<>

Skc* e * Fa

a Adaptor: pkc

e

(pks, Skg, I's)

2Party AS

SkB
-

OB EnCG(Skc)
-

18



il

A2L: Protocol Overview

(pka, Ska, ra)

Xa, SkA,

Encg(skc *
I's * rA)

O,

SKc*rrg * ra
<k

<>

Adaptor:
(PkC) rB * rA

2Party AS

(pka, skg, skc)

txs, ske Ence(ske)
.

SkG
-

oc Encg(skc™ rg * ra)

>
Skc* e * Fa
-
0]
-

O, Skc

a Adaptor: pkc

e

(pks, Skg, I's)

2Party AS

SkB

4,

OB EnCG(Skc)
-




A2L: Protocol Overview

Xa, SkA,

EnCG(Skc *
' * rA)

O,

Skc* e * Fa
<

2Party AS

txs, ske Ence(ske)

P

SkG
<

oc Encg(skc™ rg * ra)
b

Skc* e * Fa
<

O, Skc

2Party AS

OB EnCG(Skc)

P>




Xa, SkA,

EnCG(Skc *
' * rA)

O,

Skc* e * Fa
<

2Party AS

A2L: Protocol Overview

txs, ske Ence(ske)

P

<4

oc Encg(skc™ rg * ra)

2Party AS

OB EnCG(Skc)

P>




Discussion

19



Discussion

» A2L achieves atomicity and unlinkability

e Formally proven in the UC framework

19



Discussion

» A2L achieves atomicity and unlinkability
e Formally proven in the UC framework

» 2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

e Backwards compatible with Bitcoin

e Also compatible if Bitcoin adopts Schnorr

19



Discussion

» A2L achieves atomicity and unlinkability
e Formally proven in the UC framework

» 2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

e Backwards compatible with Bitcoin
e Also compatible if Bitcoin adopts Schnorr

» It requires only signature verification and timelocks (instead of
HTLC):

e Interoperability with scriptless currencies (e.g., Monero)

19



Discussion

A2L achieves atomicity and unlinkability
e Formally proven in the UC framework

2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

e Backwards compatible with Bitcoin
e Also compatible if Bitcoin adopts Schnorr

It requires only signature verification and timelocks (instead of
HTLC):

e Interoperability with scriptless currencies (e.g., Monero)
Good for fungibility

e Protocol results in a valid signature similar to any other
transaction

e Other information (e.g., encryptions) are not included
19



Evaluation

» Prototype implementation in C

» We evaluate the computation and communication

overhead in LAN network

e Comparison with TumbleBit

95x reduction

TumbleBit A2L (Schnorr) A2L (ECDSA)
. 70 ms; 110 ms;
Computation Overhead 600 ms Sy faster 5y faster
Communication Overhead | 326 KB 3.5 KB; > KB;

65X reduction

» Number of operations and communication overhead are asymptotically

reduced

» TumbleBit uses cut-and-choose

» Size of exchanged messages grow non-linearly in the security parameter

20



Take Home...

A2L is a cryptographic protocol for PCHs that achieves security,
unsinkability and interoperability

Formally specified and proven secure in the UC Framework

Advantages:

e Fully backwards compatible with Bitcoin (and Schnorr if adopted
in Bitcoin), and scriptless cryptocurrencies (e.g., Monero)

e The most efficient Bitcoin-compatible PCH

Paper available at https://eprint.iacr.org/2019/589.pdf
Implementation available at https://github.com/etairi/A2L

21


https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L

Take Home...

A2L is a cryptographic protocol for PCHs that achieves security,
unsinkability and interoperability

Formally specified and proven secure in the UC Framework

Advantages:

e Fully backwards compatible with Bitcoin (and Schnorr if adopted
in Bitcoin), and scriptless cryptocurrencies (e.g., Monero)

e The most efficient Bitcoin-compatible PCH

Paper available at https://eprint.iacr.org/2019/589.pdf
Implementation available at https://github.com/etairi/A2L

@pedrorechez

21


https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L

