
FAKULTÄT FÜR
!NFORMATIK

Faculty of Informatics

S&P SECURITY &
PRIVACY
GROUP

A2L: Anonymous Atomic Locks for Scalability and 
Interoperability in Payment-Channel Hubs

Erkan Tairi1, Pedro Moreno-Sanchez1, Matteo Maffei1

1TU Vienna

Scaling Bitcoin
Tel Aviv, Sep12th 2019

@erkantairi @pedrorechez @matteo_maffei

‣ Decentralized data structure recording each
transaction in order to provide public verifiability

‣ Global consensus: everyone checks the whole
blockchain

 2

Scalability Issues

Bitcoin’s transaction rate: ~10 tx/sec

Visa’s transaction rate: ~10K tx/sec

‣ On-chain (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain (use blockchain only for disputes)  
e.g., Payment Channel Networks

Many other projects (Bolt, Perun, Liquidity Network…)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions?

‣ On-chain (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain (use blockchain only for disputes)  
e.g., Payment Channel Networks

Many other projects (Bolt, Perun, Liquidity Network…)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions?

 4

Background on
Payment Channels

 5

101 Payment Channels

‣ A protocol to perform payments off-chain between two
users

 5

101 Payment Channels

‣ A protocol to perform payments off-chain between two
users

‣ Divided in three phases:

• Open channel: Deposit coins in the channel

• Analogy: get a gift card

 5

101 Payment Channels

‣ A protocol to perform payments off-chain between two
users

‣ Divided in three phases:

• Open channel: Deposit coins in the channel

• Analogy: get a gift card

• Pay: Send coins off-chain by exchanging
authenticated messages in a peer-to-peer fashion

• Analogy: pay with the gift card

 5

101 Payment Channels

‣ A protocol to perform payments off-chain between two
users

‣ Divided in three phases:

• Open channel: Deposit coins in the channel

• Analogy: get a gift card

• Pay: Send coins off-chain by exchanging
authenticated messages in a peer-to-peer fashion

• Analogy: pay with the gift card

• Close channel: Redeem coins according to the last
agreed state (or dispute resolution)

• Analogy: redeem remaining coins at the gift card
 5

101 Payment Channels

‣ Key point for scalability:

• Only open and close channel are on-chain

• Rest are off-chain operations

‣ For more technical description:

• See talk: Pedro Moreno-Sanchez, “Atomic Multi-
Channel Updates with Constant Collateral in Bitcoin-
Compatible Payment-Channel Networks”,
ScalingBitcoin 2019

 6

101 Payment Channels

 7

Payment Channel Hubs (PCHs)

4 1

2 3

Alice

Gateway

Carol

3 2

Bob

2 3

Dave

One cannot open channels with everyone...
 exploit gateway channels!⇒

……

 7

Payment Channel Hubs (PCHs)

4 1

2 3

Alice

Gateway

Carol

Send
1 BTC to Carol

3 2

Bob

2 3

Dave

One cannot open channels with everyone...
 exploit gateway channels!⇒

……

 8

Payment Channel Hubs (PCHs)

2 33 2

CarolAlice

1. Send 1 BTC

Gateway

 8

Payment Channel Hubs (PCHs)

2 33 2

CarolAlice

1. Send 1 BTC

3 2 1 4

Alice Carol
2. Forward 1 BTC to

Carol

Gateway

Gateway

 8

Payment Channel Hubs (PCHs)

2 33 2

CarolAlice

1. Send 1 BTC

Fee acts as an incentive for
gateway to participate in

the payment

3 2 1 4

Alice Carol
2. Forward 1 BTC to

Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee
to gateway

Gateway

Gateway

 9

Security, Privacy
and Interoperability in PCHs

Under Submission

 10

Security in PCHs: Atomicity

2 33 2

CarolAlice

1. Send 1 BTC

Gateway

 10

Security in PCHs: Atomicity

2 33 2

CarolAlice

1. Send 1 BTC

3 2 1 4

Alice Carol
2. Forward 1 BTC to

Carol

Gateway

Gateway

 10

Security in PCHs: Atomicity

2 33 2

CarolAlice

1. Send 1 BTC

3 2 1 4

Alice Carol
2. Forward 1 BTC to

Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee
to gateway

Gateway

Gateway

 10

Security in PCHs: Atomicity

2 33 2

CarolAlice

1. Send 1 BTC

3 2 1 4

Alice Carol
2. Forward 1 BTC to

Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee
to gateway

Gateway

Gateway

Should happen atomically

 11

Privacy in PCHs: Unlinkability

A C

E

A’
C’

 11

Privacy in PCHs: Unlinkability

A C

E

A’
C’

pays to

pays to
≈ pays to

pays to

 12

Interoperability in PCHs

‣ Create a PCH payment protocol backwards compatible with
Bitcoin (and as many cryptocurrencies as possible)

‣ Not an easy task:

• Perun, Liquidity Network: Ethereum-based solutions

• BOLT: Requires opcodes not available in Bitcoin

• TeeChain: Requires trusted execution environment (e.g.,
intel SGX)

• Blind Swaps: Requires Schnorr signatures

• TumbleBit: Compatible with Bitcoin

• Requires HTLC: Not possible in cryptocurrencies
without scripting language (e.g., Monero)

• Efficiency can be improved

 13

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA) (pkB, skB)

Adaptor: (pkC, skC)

 13

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA) (pkB, skB)

Adaptor: (pkC, skC)

‣ Goals:

‣ Alice can create a “half-signature” that Bob can only
finish by knowing the adaptor skC

‣ If Bob finishes the signature, Alice learns skC

 14

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA)

Adaptor: (pkC, skC)

txA:	Alice	pays	1	coin	to	Bob
(pkB, skB)

 14

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA)

Adaptor: (pkC, skC)

txA:	Alice	pays	1	coin	to	Bob

2Party AS

txA,	skA skB

σB

(pkB, skB)

 14

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA)

Adaptor: (pkC, skC)

txA:	Alice	pays	1	coin	to	Bob

2Party AS

txA,	skA skB

σB
Lock

(pkB, skB)

 14

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA)

Adaptor: (pkC, skC)

skC

σσ,	skC

txA:	Alice	pays	1	coin	to	Bob

2Party AS

txA,	skA skB

σB
Lock

(pkB, skB)

 14

Our Approach: Building Block

‣ Based on adaptor signatures (AS)

(pkA, skA)

Adaptor: (pkC, skC)

skC

σσ,	skC

txA:	Alice	pays	1	coin	to	Bob

2Party AS

txA,	skA skB

σB
Lock

(pkB, skB)

Release

 15

2Party AS: Instantiation

‣ See talk: Omer Shlomovits, “Threshold Scriptless
Scripts”, ScalingBitcoin 2019

‣ See talk: Andrew Poelstra, “Workshop on Scriptless
Scripts”, ScalingBitcoin 2018

‣ More details, see paper: Malavolta et al., “Anonymous
Multi-Hop Locks for Blockchain Scalability and
Interoperability”, NDSS 2019. Constructions with:

• One-way homomorphic functions

• Schnorr signatures

• ECDSA (building on 2p-ECDSA of Lindell)

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkCAdaptor: pkC

(pkG, skG, skC)

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkCAdaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

txA,	skA skG

σG

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

txA,	skA skG

σG

skC

σσ,	skC

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

skC

σσ,	skC

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

txA,	skA skG

σG

skC

σσ,	skC

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

skC

σσ,	skC

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

txA,	skA skG

σG

skC

σσ,	skC

 16

Our Approach: First Attempt

(pkA, skA) (pkB, skB)

Adaptor: pkC

txG,	skG skB

σB

skC

σσ,	skC

Adaptor: pkC

(pkG, skG, skC)

2Party AS2Party AS

txA,	skA skG

σG

skC

σσ,	skC

 17

Privacy in PCHs: Unlinkability

A C

E

A’
C’

pays to

pays to
≈ pays to

pays to

pk pk

pk’ pk’

 17

Privacy in PCHs: Unlinkability

A C

E

A’
C’

pays to

pays to
≈ pays to

pays to

pk pk

pk’ pk’

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS2Party AS

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS2Party AS

txG,	skG skB

σB

EncG(skC)

EncG(skC)

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS2Party AS

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS2Party AS

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

txA,	skA,

skG

σG

EncG(skC	*	  
rB	*	rA)

EncG(skC	*	rB	*	rA)

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS2Party AS
skC	*	rB	*	rA

σ
σ,		
skC	*	rB	*	rA

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

txA,	skA,

skG

σG

EncG(skC	*	  
rB	*	rA)

EncG(skC	*	rB	*	rA)

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS

skC

σσ,	skC

2Party AS
skC	*	rB	*	rA

σ
σ,		
skC	*	rB	*	rA

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

txA,	skA,

skG

σG

EncG(skC	*	  
rB	*	rA)

EncG(skC	*	rB	*	rA)

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS

skC

σσ,	skC

2Party AS
skC	*	rB	*	rA

σ
σ,		
skC	*	rB	*	rA

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

txA,	skA,

skG

σG

EncG(skC	*	  
rB	*	rA)

EncG(skC	*	rB	*	rA)

(pkG, skG, skC)

 18

A2L: Protocol Overview

(pkA, skA, rA) (pkB, skB, rB)

Adaptor: pkC

2Party AS

skC

σσ,	skC

2Party AS
skC	*	rB	*	rA

σ
σ,		
skC	*	rB	*	rA

txG,	skG skB

σB

EncG(skC)

EncG(skC)

Adaptor:  
(pkC) rB * rA

txA,	skA,

skG

σG

EncG(skC	*	  
rB	*	rA)

EncG(skC	*	rB	*	rA)

(pkG, skG, skC)

 19

Discussion

 19

Discussion

‣ A2L achieves atomicity and unlinkability

• Formally proven in the UC framework

 19

Discussion

‣ A2L achieves atomicity and unlinkability

• Formally proven in the UC framework

‣ 2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

• Backwards compatible with Bitcoin

• Also compatible if Bitcoin adopts Schnorr

 19

Discussion

‣ A2L achieves atomicity and unlinkability

• Formally proven in the UC framework

‣ 2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

• Backwards compatible with Bitcoin

• Also compatible if Bitcoin adopts Schnorr

‣ It requires only signature verification and timelocks (instead of
HTLC):

• Interoperability with scriptless currencies (e.g., Monero)

 19

Discussion

‣ A2L achieves atomicity and unlinkability

• Formally proven in the UC framework

‣ 2Party AS can be instantiated with One-way homomorphic
functions, Schnorr or ECDSA

• Backwards compatible with Bitcoin

• Also compatible if Bitcoin adopts Schnorr

‣ It requires only signature verification and timelocks (instead of
HTLC):

• Interoperability with scriptless currencies (e.g., Monero)

‣ Good for fungibility

• Protocol results in a valid signature similar to any other
transaction

• Other information (e.g., encryptions) are not included

 20

Evaluation

‣ Prototype implementation in C

‣ We evaluate the computation and communication
overhead in LAN network

• Comparison with TumbleBit

TumbleBit A2L (Schnorr) A2L (ECDSA)

Computation Overhead 600 ms 70 ms;  
8x faster

110 ms;
5x faster

Communication Overhead 326 KB 3.5 KB;
95x reduction

5 KB;
65x reduction

‣ Number of operations and communication overhead are asymptotically
reduced

‣ TumbleBit uses cut-and-choose

‣ Size of exchanged messages grow non-linearly in the security parameter

‣ A2L is a cryptographic protocol for PCHs that achieves security,
unsinkability and interoperability

‣ Formally specified and proven secure in the UC Framework

‣ Advantages:

• Fully backwards compatible with Bitcoin (and Schnorr if adopted
in Bitcoin), and scriptless cryptocurrencies (e.g., Monero)

• The most efficient Bitcoin-compatible PCH

‣ Paper available at https://eprint.iacr.org/2019/589.pdf

‣ Implementation available at https://github.com/etairi/A2L

 21

Take Home...

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L

‣ A2L is a cryptographic protocol for PCHs that achieves security,
unsinkability and interoperability

‣ Formally specified and proven secure in the UC Framework

‣ Advantages:

• Fully backwards compatible with Bitcoin (and Schnorr if adopted
in Bitcoin), and scriptless cryptocurrencies (e.g., Monero)

• The most efficient Bitcoin-compatible PCH

‣ Paper available at https://eprint.iacr.org/2019/589.pdf

‣ Implementation available at https://github.com/etairi/A2L

 21

Take Home...

THANKS! @pedrorechez

https://eprint.iacr.org/2019/583.pdf
https://github.com/etairi/A2L

