Non Custodial Sidechains for
Bitcoin utilizing Plasma Cash
and Covenants

(research in progress)

Georgios Konstantopoulos
® Independent Consultant & Researcher
Scallng Twitter: @gakonst / me@gakonst.com

Slides available: gakonst.com/scalingbitcoin2019.pdf

https://twitter.com/@gakonst
mailto:me@gakonst.com
https://gakonst.com/scalingbitcoin2019.pdf

Related Work

Plasma: Autonomous Scalable Smart Contracts, Poon, Buterin

Plasma Ethresearch, too many contributors

NOCUST — A Securely Scalable Commit-Chain, Khalil, Gervais, Felley

CoinCovenants using SCIP signatures, an amusingly bad idea, Maxwell

Preventing Consensus Fraud with Commitments and Single-Use-Seals, Todd

Minimal Viable Merged Consensus, Adler

http://plasma.io/plasma.pdf
https://ethresear.ch/c/plasma
https://eprint.iacr.org/2018/642.pdf
https://bitcointalk.org/index.php?topic=278122.0
https://petertodd.org/2016/commitments-and-single-use-seals
https://ethresear.ch/t/minimal-viable-merged-consensus/5617

How do we scale?

1. Increase semantic density of transactions
(Segwit / MAST / Schnorr / Taproot / ... / Layer 2)

2 Biggerblocks

Sidechains considered harmful

Lock BTC in escrow Unlock BTC

\
I, \)
B
\\ Y,
\~_¢/

Mint LBTC Burn LBTC

Sidechains considered harmful

Lock BTC in escrow

No peg-out?!

LBTC transfer

Mint LBTC Burn LBTC
transaction gets
censored!

Statechains considered harmful

Lock BTC in escrow

“Statechain
entity”

Mint SBTC Any previous holder of the
UTXO key can collude with
the entity and steal funds

Plasma Cash Tradeoffs

1. Operator cannot steal

2. “Finalize” arbitrary number of txs
in one on-chain transaction

3. No overcollateralization
requirements

4. No need to sign to receive a
payment

5. Can receive funds without
on-chain transaction (no notion
of inbound liquidity)

https://docs.gooqgle.com/spreadsheets/d/1vHwW3Rr7aFH1FXIlyMinhCOWvro 1Z4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs

1. Operator cannot steal

2. “Finalize” arbitrary number of txs
in one on-chain transaction

3. No overcollateralization
requirements

4. No need to sign to receive a
payment

5. Can receive funds without
on-chain transaction (no
notion of inbound liquidity)

https://docs.gooqgle.com/spreadsheets/d/1vHwW3Rr7aFH1FXIlyMinhCOWvro 1Z4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs

1. Operator cannot steal 1. Fixed denomination transfers
2. “Finalize” arbitrary number of txs 2. Safe only under liveness
in one on-chain transaction assumption (O(1) stale state
3. No overcollateralization fraud proof)
requirements 3. Requires high base chain quality
4. No need to sign to receive a (so that disputes can reliably get
payment included)

5. Can receive funds without
on-chain transaction (no notion
of inbound liquidity)

https://docs.gooqgle.com/spreadsheets/d/1vHwW3Rr7aFH1FXIlyMinhCOWvro 1Z4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs

1. Operator cannot steal 1. Fixed denomination transfers
2. “Finalize” arbitrary number of txs 2. Safe only under liveness
in one on-chain transaction assumption (O(1) stale state
3. No overcollateralization fraud proof)
requirements 3. Requires high base chain
4. No need to sign to receive a quality (so that disputes can
payment reliably get included)

5. Can receive funds without
on-chain transaction (no notion
of inbound liquidity)

https://docs.gooqgle.com/spreadsheets/d/1vHwW3Rr7aFH1FXIlyMinhCOWvro 1Z4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

“Operator” commits* each block root to “parent chain”

.— e - e e e l—| e e e e e e

Operator (similar to
Statechain Entity)

*uses accumulator that supports
non-membership proofs e.g. ordered merkle tree

Users prove coin history per transfer (off-chain)

.— |— |<— |~ la— |— le— la—

{OHOHEHTHHE

\)]
|

Prove Prove
exclusion inclusion

Users prove coin history per transfer (off-chain)

e I S N T = T N
B . T

\ J
Y | | |

Prove Prove Prove Prove
exclusion inclusion exclusion inclusion

Coin history grows linearly with number of blocks
TXO Commitments? RSA Accumulators?

Exit Game: Delayed Withdrawals

Deposit
script

|

' l— |<—| f— l— l— f—| l— fe— fe— fe— la— l—

Spend to Wait T Spend w/o

fraud-proof script: limitations

“exit” from exit
script after T

Exit Game: Delayed Withdrawals

Deposit
script

|

l— la— la—

' ~ N - -

Spend to
fraud-proof script:
“exit”

\A

CHALLENGE:
Spend back to
deposit script

Transaction Format: 1 input 1 output UTXO

(UTXO ID, PARENT BLOCK, NEW OWNER, PREV OWNER SIG)

(0x123, 1, Bob, Alice_sig)

UTXO ID: 0x123 1 - 2 - 3 < 4

Alice Bob

https://ethresear.ch/t/plasma-cash-was-a-transaction-format/4261

https://ethresear.ch/t/plasma-cash-was-a-transaction-format/4261

Merkle Tree: TxHash at each UTXO_ID index

Current Block: 2

UiD

7 [OH AN/ EVANEAN

leaf[i] = txs[i] ?
sha256 (txs[i]) : sha256(0)

Merkle Tree: TxHash at each UTXO_ID index

Current Block: 2

[0 /\ VANV

T leaf[i] = txs[i] °?
sha256 (txs[i]) : sha256(0)

Merkle Tree: TxHash at each UTXO_ID index

Current Block: 3

ulD /\
1 | |
N
4 e -
r [0 /N /N

—

T leaf[i] = txs[i] °?
sha256 (txs[i]) : sha256(0)

Exit

\/

Exit:
Parent Block, Block

“Exit Spent Coin”

1

2 <

3

\/

Exit:
Parent Block, Block

Challenge:
Tx spent at
Block’ > Block

“Exit Double Spend”

1 < 2 < 3

T

Exit:
Parent Block, Block

Challenge:
Parent Tx spent at
Parent Block < Block’ < Block

“Invalid History Challenge”

2 - 3
Exit:

B
s

Parent Block, Block
Challenge:

Claim ownership at
Block’ < Parent Block

Response to Invalid History Challenge

1 < 2 < 3 < 4

|

Exit:
Parent Block, Block

Challenge:
Claim ownership at

Block’ < Parent Block
Response:

Reveal spend from 1 at
Block’ < Block’’ <= Parent Block

Background literature on covenants

What is a covenant?
Restriction on the outputs spending a UTXO.

O’Connor @ Bitcoin Workshop 2017:
e Digital signatures: WHO can spend Bitcoin
e Timelocks: WHEN Bitcoin can be spent

Alice Bob 7?7

What is a covenant?
Restriction on the outputs spending a UTXO.

O’Connor @ Bitcoin Workshop 2017:
e Digital signatures: WHO can spend Bitcoin

e Timelocks: WHEN Bitcoin can be spent
e Covenants: HOW and WHERE Bitcoin can be spent

+covenant
Alice v Bob EFF

Use Cases

Vaults

Paralysis Proofs

Colored Coins (non-fungible tokens)

Congestion Control

Fraud proofs — Sidechains with trust-minimized
reverse peg

e ...more in the mailing list

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-November/013271.html

Covenant Designs

e OP_CHECKOUTPUT (MES’16)

e OP CAT + OP_CHECKSIGFROMSTACK (O’Connor,
Piekarska ‘17)

e OP CHECKOUTPUTSHASHVERIFY/
OP_SECURETHEBAG (Rubin ‘19)

e OP_PUSHTXDATA (Lau ‘17)

e Presigned Transactions (..? mailing list spec)

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017229.html

Implementing
Plasma Cash on Bitcoin

UTXO State Machine

Interactive Challenge

start —’@/\

Challenge

Response

Merkle Proof Verification

VerifyIncluded (UTXO ID, ROOT, TX HASH, PROOF) :

ROOT

TX_ HASH

PROOF

UTXO ID
MERKLEBRANCHVERIFY

Verify block root was signed by Operator

VerifySignedByOperator (BLOCK NUM, ROOT, SIG):

BLOCK_NUM

ROOT

CAT

SIG

<OPERATOR_ADDRESS>
CHECKSIGFROMSTACKVERIFY

Verify transaction was signed by previous owner

VerifyTxSigned (TX)

UTXO_ID

PARENT BLOCK NUM
NEW_OWNER

CAT CAT SHA256

SIG

<PREV_OWNER PUBKEY>
CHECKSIGFROMSTACKVERIFY

Enforce UTXO is spent to next state

EnforceSpentTo (ARGS, NEXT STATE PATTERN) :
ARGS
NEXT STATE PATTERN
CHECKOUTPUTVERIFY
(use PICK to dynamically construct the covenant with scriptSig args)

Deposit = Spend to covenant

Spend to EnforceSpentTo (EXIT)

Interactive Challenge

Withdraw /7 "\
start [—> >

Challenge

Response

Exit = Spend from Deposit to Exit Script

Interactive Challenge

Challenge

Response

Spend to
EXIT (parentIncludedTx, includedTx)

Challenge Spent Coin / Double Spend = Spend back to
Deposit

Interactive Challenge

Exit

Withdraw N\
start — > /'
Response

('h;ﬁngv

Spend to DEPOSIT, show includedTx
according to exit game

Challenge Invalid History = Increment Counter,
Response = Decrement Counter

Interactive Challenge

Exit)
\Vitll(ll‘il\\;
\\

start —’@/_\

Challenge

Response

Spend to EXIT’ , show includedTx according
to exit game. New EXIT state = previous state with
1 extra IF condition for the Response.

Withdraw = Spend anywhere after T if counter =0

Interactive Challenge

Exit _
tart @/\‘ \\'itlulrm\-
start — .

__/
Challenge

Response

CSV 1000 BENEFICIARY ADDRESS CHECKSIG

Finalize Challenge = Spend to Deposit after T if

counter >0

Interactive Challenge

Exit

start __,@/_\A
\

\\'ith(lrm\;

Challenge

Response

Summary

Off-chain fixed-denomination payments

Safe under liveness assumption

“Compression” mechanism (more txs settle per block)
No on-chain transaction to join

Can receive payments when keys are cold

Capital efficient

Implementation WIP (done on Ethereum since last year)
Complex & secure scripts are hard

Thank you for your attention
Q&A?

@gakonst / me@gakonst.com
gakonst.com/scalingbitcoin2019.pdf

gakonst.com/plasmacash.pdf

https://twitter.com/@gakonst
mailto:me@gakonst.com
https://gakonst.com/scalingbitcoin2019.pdf
https://gakonst.com/plasmacash.pdf

Appendix

More general State Transitions?
Data unavailability breaks safety...

NOCUST - Data unavailability challenge

Case 1 Case 2
T1 V1 publishes block V1 publishes block
with missing data with all data

o
1 ®]
V2 raises a

V2 raises an alarm
false alarm

T3 V1 publishes

remaining data

&

httos.//qithub.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

“Optimistic Rollup” - Put all the data on-chain

.— | || [1| [. 1| [[[[[

L

commit (0x...) + encoding of txs

.— | < < | | [[| < < < <

Use the Layer 1 as a data availability and dispute layer. Do not
perform any computations on the txs themselves.

Security & Incentive Compatibility

of Layer 2 games requirements™:

- liveness (somebody must challenge)
- expected reward of attacker <=0

*L2 games are implemented as deferred optimists:
https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84

https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84

Secure iff challenge included beforetO + T

t1+ D <t0 + T — attack cancelled

\
l \
t0 t1 t1+D t0+T

|

Malicious Challenge Challenge
Exit broadcast included

Secure iff challenge included beforetO + T

t1+ D <t0 + T — attack cancelled

—I—I—I{_—A_‘I—V

t0 t1 t1+D t0O+T

|

Malicious Challenge Challenge
Exit broadcast included

Insecure iff no challenge included beforet0 + T

t1+ D >1t0 + T — attack succeeds

I e T

0 t1 t0O+T t1+D

|

Malicious Challenge Challenge
Exit broadcast included

Insecure iff no challenge included beforet0 + T

t1+ D >1t0 + T — attack succeeds

I e T

to0 t1 t0O+T t1+D
Malicious Challenge Challenge
Exit broadcast included

Safety condition: D <= T +|t0 - t1 | Livenessof

observers

Attacker Decision Flow

Malicious Exit

cnale’ °

Attack Failed

Pay fee + bond

N

Attack Succeeds

+ Full bond refunded
+ Coin value
obtained
Exit fee

Attacker Decision Flow

Malicious Exit

3
cnale’ °

Attack Failed

>

&

Losses cut

Big losses

a% of bond refunded -

Exit fee
Challenge fee

100% of bond lost
Exit fee
Challenge fee

Pay fee + bond

N

Attack Succeeds

+ Full bond refunded

+ Coin value
obtained

- Exit fee

Incentive Compatibility of the Exit Game

E(R) = P(C)v

|

No challenges = success:

1 onchain congestion / censorship
1 block withholding

| liveness of participants

| challenge period T

Large T = Secure but bad UX!

Incentive Compatibility of the Exit Game

E(R) = P(C)v — [gas + P(C) * bond)]

N

R
/ cost to attack

No challenges = success: Cost to Attack =

e 1 onchain congestion / censorship e Tx fees (constant)

1 block withholding e Fidelity Bond

[]
e | liveness of participants 06s o challenger
e | challenge period T (9 ger)

Large T = Secure but bad UX!

Incentive Compatibility of the Exit Game

v — [gas + P(C) % bond] + P(G)P(F | C) * bond < 0

=5 2B
/ cost to attack reward fromh frontrunning

No challenges = success: Cost to Attack =

e 1 onchain congestion / censorship e Tx fees (constant)

1 block withholding e Fidelity Bond

[J
e | liveness of participants oes o challenger
e | challenge period T (9 g

Frontrunning removes bond
from cost if successful

Large T = Secure but bad UX! P(F[C)=0
Attacker won't frontrun
if nobody challenged

Incentive Compatibility of the Exit Game

v — [gas + P(C) % bond] +aP(C)P(F | C) * bond < 0

"

cost to attack reward fromh frontrunning

|

Frontrunning removes bond
from cost if successful

'

Burn part of the bond.

No challenges = success: Cost to Attack =

e 1 onchain congestion / censorship e Tx fees (constant)

1 block withholding e Fidelity Bond

[J
e | liveness of participants oes o challenger
e | challenge period T (9 g

Large T = Secure but bad UX! P(F[C)=0
Attacker won't frontrun
if nobody challenged

Plasma Cash — Fixed-denomination.
Arbitrary denomination payments?

Plasma Cash + Channels = Plasma Debit

® Each coinis a channel with the operator
Example:

A has a 5/5 coin. B has a 0/5 coin. A can pay B by atomically decreasing
her coin by 1 and increasing B’s coin by 1. Capped liquidity. Also receiver
needs to sign the state update.

https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198

https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198

Plasma Cash + Fragmentation = Plasma Cashflow

Plasma Cash + Fragmentation = Plasma Cashflow

range of 10 x 10 cent fragments

A non-interrupted range can be transferred in 1 tx

Bob

AL CO 10—

0 25 50 75 100

Alice transfers range [0,75) to Bob!

A non-interrupted range can be exited in 1 tx

Bob

AL CO 10—

0 25 50 75 100

Alice exits range [0,75)!

Any 1 coin inside the range is a valid challenge!

Bob '

Alice |

50 75 100

Alice exits range [0,75)!
Challenge with 26!

Defragmentation of ranges

Bob owns 1 range

/

Bob E—

Alice ———

™~ p

0 5 50 75 100

Alice owns 2 ranges

https://twitter.com/_sgtn/status/1100357379760091137

https://twitter.com/_sgtn/status/1100357379760091137

Defragmentation of ranges

Bob owns 1 range

\

Bob E—

Alice

0 25 50 75 100

Alice owns 1 range!

https://ethresear.ch/t/plasma-cash-defragmentation/3410
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409

https://ethresear.ch/t/plasma-cash-defragmentation/3410
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409

Merkle Interval Tree

Inclusion / exclusion proofs for ranges w/ light client support!

Whiteboard Series with NEAR | Ep: 8 Ben Jones from Plasma Group |

N (50,050
A3 p
/]w7 N a\<)(“")) 200
APy Lma((y frea-. 600/’5—0]< K \
sl > A ‘ e l)urem’(leﬂl ;,'?;\71\/ /o
D L > ; LS

N s / o BJ /“
- \k (-Q‘ @) on\\)YVC)" N\ ’ME /by¥“ ?2 CD’ ’
0 o) L?m) F"(fent - G\qshacfl

Il ») 2641/1:02:13

https://www.youtube.com/watch?v=-8Jp7VispQE

https://www.youtube.com/watch?v=-8Jp7VjspQE

