
FAKULTÄT FÜR
!NFORMATIK

Faculty of Informatics

S&P SECURITY &
PRIVACY
GROUP

Atomic Multi-Channel Updates with Constant Collateral
in Bitcoin-Compatible Payment-Channel Networks

Christoph Egger1, Pedro Moreno-Sanchez2, Matteo Maffei2

1Friedrich-Alexander-University, Erlangen-Nueremberg
2TU Vienna

Scaling Bitcoin
Tel Aviv, Sep12th 2019

@siccegge @pedrorechez @matteo_maffei

‣ Decentralized data structure recording each
transaction in order to provide public verifiability

‣ Global consensus: everyone checks the whole
blockchain

 2

Scalability Issues

Bitcoin’s transaction rate: ~10 tx/sec

Visa’s transaction rate: ~10K tx/sec

‣ On-chain (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain (use blockchain only for disputes)  
e.g., Payment Channel Networks

Many other projects (Bolt, Perun, Liquidity Network…)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions?

‣ On-chain (tweak consensus)  
e.g., DAG Blockchain, sharding, ...

‣ Off-chain (use blockchain only for disputes)  
e.g., Payment Channel Networks

Many other projects (Bolt, Perun, Liquidity Network…)

Lightning Network
(Bitcoin)

Raiden Network
(Ethereum)

 3

Scalability Solutions?

 4

Background on
Payment Channels

 5

Payment Channels: Open

Alice Bob

Blockchain

5 1

 5

Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

5 1

5 (Alice)

5 (Alice,Bob)

Alice

‣ Alice creates multisig contract to
deposit money on the channel

 5

Payment Channels: Open

Alice Bob

Blockchain

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

5 1

5 (Alice)

5 (Alice,Bob)

Alice

5 (Alice,Bob)

5 (Alice)

Alice,Bob

‣ Alice creates multisig contract to
deposit money on the channel

‣ Alice lets Bob sign a refund
transaction to unlock the money

 6

Payment Channels: Open

Alice Bob

Blockchain

5 1

5 (Alice)

5 (Alice,Bob)

Alice

5 (Alice,Bob)

5 (Alice)

Alice,Bob

‣ Alice creates multisig contract to
deposit money on the channel

‣ Alice lets Bob sign a refund
transaction to unlock the money

‣ Alice places the multisig contract
onchain

 7

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

4 1

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice

 8

Payment Channels: Transactions

Blockchain

5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice ?? Bob

3 2

Alice Bob
5 (Alice, Bob)

3 (Alice)

2 (Bob)

Alice ?? Bob

5 (Alice)

5 (Alice,Bob)

Alice

Under the hood

Mechanisms for bidirectional payments
and for revocation of old states

5 (Alice, Bob)
3 (Alice)

2 (Bob)

 Alice,Bob

Payment Channels: Close

Blockchain

Alice Bob

5 (Alice)

5 (Alice,Bob)

Alice

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol
Send

1 BTC to Carol

One cannot open channels with everyone...
exploit channel paths!⇒

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

Should happen atomically

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

Should happen atomically

 10

Payment Channel Networks (PCNs)

4 1 2 3

Alice Bob Carol

Bob

2 33 2

CarolAlice

1. Send 1 BTC

Send
1 BTC to Carol

Fee acts as an incentive for
Bob to participate in the

payment

3 2 1 4

Alice Bob Carol
2. Forward 1 BTC to

Carol

3-fee 2f 
e 
e

3-fee 2f 
e 
e

1. Send 1 BTC + fee
to Bob

5

 11

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 1

Alice Bob
y

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

5

 11

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob can
“open” + publish the

transaction on the blockchain

for enforcing the payment

5

 11

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x After time the
transaction cannot be
published anymore on

the blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob can
“open” + publish the

transaction on the blockchain

for enforcing the payment

5

 11

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

4 (Alice)

1 (Bob)

Alice ?? Bob

4 14 1

Alice Bob
y

x

HTLC (Alice, Bob, 1, y,):
Alice pays Bob 1 BTC iff Bob shows some

x such that H(x) = y before

After time the
transaction cannot be
published anymore on

the blockchain

5 (Alice, Bob)
4 (Alice)

1 (Bob)

Alice ?? Bob

y

With knowledge of x, Bob can
“open” + publish the

transaction on the blockchain

for enforcing the payment

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

2 3

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

y:= H(x)

x

y

2 3

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t)

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

2 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x

2 32 31.10.9 3

1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y

x x

2 32 31.10.9 3

1

0.9 4.1

3 2

 12

HTLC for Multi-hop Payments

Alice Bob Carol

HTLC(Alice, Bob, 1.1, y, t) HTLC(Bob, Carol, 1, y, t’)

2 21

y:= H(x)

x

y
Requirement: t > t’

(after Carol revealed x to Bob, there
must still be time for Bob to reveal x

to Alice)

x x

2 32 31.10.9 3

1

0.9 4.1

 13

Security and Privacy Issues in Existing
PCNs

ACM CCS 2017

NDSS 2019

 14

Expressiveness and Collateral in
Payment-Channel Networks

ACM CCS 2019

‣ In this work, we identify two open challenges: 

• Restricted expressiveness (and functionality)

− Current Bitcoin-compatible PCNs restricted to single path-
based payments 

• High collateral

− A payment requires to put aside coins for a very long time

 15

Open Challenges

‣ So far we focused on single path-based payments

 16

Improve Expressiveness Beyond Paths...

‣ Atomic Multi-Path (AMP)1 payments: First step towards expressiveness

1	https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html

 17

Our Goal: Full Expressiveness

‣ Support for arbitrary graph topology

‣ Enable new applications:

‣ Crowd funding

‣ Channel rebalancing

‣ Netting

‣ Your own application?

‣ Each payment of k coins along an n-channel path requires to put
aside at least kn coins

‣ Also, each user i has to lock her coins for a time Δ(n-i) where Δ is
the time to safely close a channel

‣ Coins locked too long!

 18

Collateral

k+fees	coins	
nΔ	time

k	coins	
Δ	time

...	n-2	channels	...

‣ The adversary has a time amplification factor of n-1

‣ Δ is 1 day in the Lightning network!

‣ The attacker can use several paths

 19

Griefing attack

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

‣ Constant collateral: Coins are locked only for Δ time,
independently of the number of channels

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

k+fees	coins	
Δ	time

‣ Constant collateral: Coins are locked only for Δ time,
independently of the number of channels

‣ Reduces the amplification factor

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

k+fees	coins	
Δ	time

‣ Constant collateral: Coins are locked only for Δ time,
independently of the number of channels

‣ Reduces the amplification factor

‣ Feasible in Ethereum-based PCNs: Sprites1

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

k+fees	coins	
Δ	time

1	A.	Miller	et	al.	Sprites	and	State	Channels:	Payment	Networks	that	Go	Faster	than	Lightning.	

‣ Constant collateral: Coins are locked only for Δ time,
independently of the number of channels

‣ Reduces the amplification factor

‣ Feasible in Ethereum-based PCNs: Sprites1

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

k+fees	coins	
Δ	time

1	A.	Miller	et	al.	Sprites	and	State	Channels:	Payment	Networks	that	Go	Faster	than	Lightning.	

‣ Constant collateral: Coins are locked only for Δ time,
independently of the number of channels

‣ Reduces the amplification factor

‣ Feasible in Ethereum-based PCNs: Sprites1

 20

Our Goal: Constant Collateral

...	n-2	channels	...

k+fees	coins	
nΔ	time

k	coins	
Δ	time

k+fees	coins	
Δ	time

1	A.	Miller	et	al.	Sprites	and	State	Channels:	Payment	Networks	that	Go	Faster	than	Lightning.	

AMCU: Constant collateral
and backwards compatible

with Bitcoin script

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B) Split the channel so
that 2 coins are still

available

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B)

Phase	2	(Lock	for	A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

After some Δ you get
back the money (in
case of failure in the

next phases)

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B)

Phase	2	(Lock	for	A,B)

Phase	3	(Consume	for	A,B)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

To spend you need
money in a fresh

account, which does
not have money yet,
key towards atomicity

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B)

Phase	2	(Lock	for	A,B)

Phase	3	(Consume	for	A,B)

Phase	4	(Enable)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

A Multi-In Multi-Out
(MIMO) transaction

creates all fresh
addresses in one shot

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B)

Phase	2	(Lock	for	A,B)

Phase	3	(Consume	for	A,B)

Phase	4	(Enable)

(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

Setup	—>	Enable	—>	Consume	
Setup	—>	Lock

 21

Atomic Multi-Channel Updates (ACMU)

8	(out	of	10) 7	(out	of	30)

(A1,B1): 10 (A2,B2): 2

(A3,B3): 8
A1

B1

Phase	1	(Setup	for	A,B)

Phase	2	(Lock	for	A,B)

Phase	3	(Consume	for	A,B)

Phase	4	(Enable)

Phase	5	(Disable)
(A3,B3): 8

(A4,B4): 8
A3

B3

(A5,B5): 7.99 eAB: 0.01

B6: 8
A5

B5

(A3,B3): 8

eAB: 0.01(A5,B5): 7.99
A3

(B’3,C3): 7

(B’5,C5): 6.99 eBC: 0.01
B3

B’3
C3

(A7,B7): 8

eAB: 0.01(A5,B5): 7.99
A5

(B’7,C7): 7

(B’5,C5): 6.99 eBC: 0.01
B5

B’5
C5

eAB

eBC

Solves ambiguous
state between Enable

and Lock

‣ AMCU achieves atomicity. In particular:

• If the coins at one channel are ready to be sent to expected
receiver, then all channels ready to forward payment

• Otherwise, coins remain at a channel owned by original owners

‣ AMCU does not achieve relationship anonymity

• Every user in the path collaborates with each other

‣ Instead,

• Constant collateral (coins locked constant time)

• Backwards compatible with current Bitcoin scripting language

• Accountability: Possible to show a proof of misbehavior

 22

Security and Privacy Analysis

‣ We can reduce the collateral to a constant and synchronize
multiple transaction atomically

‣ Backwards compatible with Bitcoin script

‣ Formally specified and proven secure in the UC Framework

‣ Advantages:

• Makes the collateral constant

• Enables new classes of off-chain applications (e.g., crowd
funding, channel rebalancing and more?)

‣ To be presented at ACM CCS 2019

‣ Paper available at https://eprint.iacr.org/2019/583.pdf

 23

Take Home...

https://eprint.iacr.org/2019/583.pdf

‣ We can reduce the collateral to a constant and synchronize
multiple transaction atomically

‣ Backwards compatible with Bitcoin script

‣ Formally specified and proven secure in the UC Framework

‣ Advantages:

• Makes the collateral constant

• Enables new classes of off-chain applications (e.g., crowd
funding, channel rebalancing and more?)

‣ To be presented at ACM CCS 2019

‣ Paper available at https://eprint.iacr.org/2019/583.pdf

 23

Take Home...

THANKS! @pedrorechez

https://eprint.iacr.org/2019/583.pdf

