/ / """ . w - FAKULTAT FUR

TECHNISCHE '
| INFORMATIK

NIVERSHTAT
Q& SECURITY &
S P PRIVACY
C PrvAC

WIEN

—Vienna | Austria

Atomic Multi-Channel Updates with Constant Collateral
in Bitcoin-Compatible Payment-Channel Networks

Christoph Egger!, Pedro Moreno-Sanchez?, Matteo Maffei?

@siccegge (@pedrorechez (@matteo_maffel

'Friedrich-Alexander-University, Erlangen-Nueremberg
2TU Vienna

Scaling Bitcoin
Tel Aviv, Sep12th 2019

Scalability Issues

» Decentralized data structure recording each
transaction in order to provide public verifiability

» Global consensus: everyone checks the whole
blockchain

Bitcoin’s transaction rate: ~10 tx/sec
Visa’s transaction rate: ~10K tx/sec

Scalability Solutions?

» On-chain (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain (use blockchain only for disputes)
e.g., Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) . (Ethereum)

Many other projects (Bolt, Perun, Liquidity Network...)

Scalability Solutions?

» On-chain (tweak consensus)
e.g., DAG Blockchain, sharding, ...

» Off-chain (use blockchain only for disputes)
e.g., Payment Channel Networks

Lk Lightning Network P Raiden Network
(Bitcoin) . (Ethereum)

Many other projects (Bolt, Perun, Liquidity Network...)

Background on
Payment Channels

Payment Channels: Open

¥1h

Alice

Blockchain

P

Payment Channels: Open

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

Blockchain

P

» Alice creates multisig contract to
deposit money on the channel

Payment Channels: Open

Multisig Contract

Can be spent only with the
signatures of both Alice and Bob

Blockchain

» Alice creates multisig contract to
deposit money on the channel

» Alice lets Bob sign a refund
transaction to unlock the money

Payment Channels: Open

e
il

Bob

R -: » Alice creates multisig contract to
' 5 (Alice,Bob) | | deposit money on the channel

5 (Alice) » Alice lets Bob sign a refund
' transaction to unlock the money

F » Alice places the multisig contract

onchain

6

Payment Channels: Transactions

> 4 (Alice)

.| 5 (Alice, Bob)

» 1 (Bob) L ~ Bob

TTTTTmTmTmmomssssonssosoiososoioes Gﬂmce 7 Bob)

Blockchain

Payment Channels: Transactions

3 (Alice)

. | 5 (Alice, Bob) :
—— > 2 (Bob) - —> BOb

Under the hood

Mechanisms for bidirectional payments
and for revocation of old states

Blockchain

Payment Channels: Close

¥1!

Alice Bob

Blockchain

Payment Channel Networks (PCNs)

{) mmm O] L

Alice Bob Carol
Send
1 BTC to Carol

One cannot open channels with everyone...
— exploit channel paths!

10

Payment Channel Networks (PCNs)

{) IEE . EN -

Alice Bob
Send
1 BTC to Carol

e

2 | o B -
Bob
C

< >

¢}
Alice
€Send 1B

10

Payment Channel Networks (PCNs)

{) EEEN

Alice
Send
1 BTC to Carol

2

2

Alice

i
Alice

éSend 1 B'ID
{)

s
&l

Bob

e

an EH :

Bob

e

Bob — Carol
2. Forward 1 BTC to
Carol

10

Payment Channel Networks (PCNs)

 {) I

Alice
Send
1 BTC to Carol

FINE

Bob

Alice Bob
€Send 1 BD

 {)

Alice

~

Bob

s
&l

Should happen atomically

r~
an EN :

2. Forward 1 BTC to
Carol

Y

Carol

@

Carol

| ﬁ

Carol

10

Payment Channel Networks (PCNs)

{) EEE O BN

Alice

4 Ex

Alice

1 BTC to Carol

Bob Carol

Should happen atomically

1. Send 1 BTC + fee
to Bob

] & o)
Bob Carol

Fee acts as an incentive for 2. Forward 1 BTC to

Bob to participate in the

payment

Carol

10

Hashtime Lock Contract (HTLC)

¥1!

Alice —

5 (Alice, Bob)

4 (Alice)

o — Bop

@Alice ?? Bob)

11

Hashtime Lock Contract (HTLC)

y £)

Alice —

5 (Alice, Bob)

-

/\

With knowledge of x, Bob can
“open”a + publish the
transaction on the blockchain
for enforcing the payment

11

Hashtime Lock Contract (HTLC)

' ﬂ > 4 (Alice) - ﬁ

5 (Alice, Bob)
Alice — g (Bob) s’ Bob

Q/Ahce ?? Bob)\ \
70N

After time the
transaction cannot be

published anymore on

/\ the blockchain

With knowledge of x, Bob can
“open”a + publish the
transaction on the blockchain
for enforcing the payment

11

Hashtime Lock Contract (HTLC)

5 (Alice, Bob)

After time the

transaction cannot be

\\ / — published anymore on
— the blockchain

With knowledge of x, Bob can

copen @ + publih the HTLC (Alice, Bob. 1. v, {):
transaction on the blockchain Alice pays Bob 1 BTC iff Bob shows some
x such that H(x) = y before

for enforcing the payment

11

HTLC for Multi-hop Payments

12

HTLC for Multi-hop Payments

12

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, vy, t)

{{m T2

Alice

12

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, vy, t)

p=—

Alice

Bob

HTLC(Bob, Carol, 1, vy, t’)

12

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, vy, t)

p=—

Alice

Bob

HTLC(Bob, Carol, 1, vy, t’)

12

HTLC for Multi-hop Payments

HTLC(Alice, Bob, 1.1, vy, t)

{l/\/

Alice <

Bob

HTLC(Bob, Carol, 1, vy, t’)

12

HTLC for Multi-hop Payments

Requirement: t > t’

(after Carol revealed x to Bob, there
must still be time for Bob to reveal x

to Alice)

\/

HTLC(Alice, Bob, 1.1, y, t

\/

ﬂ/

Alice <

Bob

N

HTLC(Bob, Carol, 1, vy, t’)

3

<

12

Security and Privacy Issues in Existing

Concurrency and Privacy with Payment-Channel Networks*

Giulio Malavolta' Pedro Moreno-Sanchez!
Friedrich-Alexander-University Erlangen-Niirnberg Purdue University
malavolta@cs.fau.de pmorenos@purdue.edu

Aniket Kate Matteo Maffei Srivatsan Ravi
Purdue University TU Wien University of Southern California
aniket@purdue.edu matteo.maffei@tuwien.ac.at srivatsr@Qusc.edu

Abstract

less blockchains protocols such as Bit are inherently limited in transaction throughput
and latency. Current efforts to address this key issue focus on off-chain payment channels that can be
combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without
requiring to access the blockchain other than to register the initial and final capacity of each channel.
While this approach paves the way for low latency and high throughput of payments, its deployment in
practice raises several privacy concerns as well as technical challenges related to the inherently concurrent
nature of payments that have not been sufficiently studied so far.

In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition
in the Universal Composability framework as well as practical and provably secure solutions. In particular,
we present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable
privacy guarantees for PCNs and is fully compatible with the Bitcoin scripting system. However, Fulgor
is a blocking protocol and therefore prone to deadlocks of concurrent payments as in currently available
PCNs. Instead, Rayo is the first protocol for PCNs that enforces non-blocking progress (i.e., at least one
of the concurrent payments terminates). We show through a new impossibility result that non-blocking

PCNs

Anonymous Multi-Hop Locks for Blockcha
Scalability and Interoperability

Giulio Malavolta*$, Pedro Moreno-Sanchez* 7, Clara Schneidewind’, Aniket Kate!, Matteo Maffeit
§Friedrich-Alexander-University Erlangen-Niirnberg, TTU Wien, ¥ Purdue University

Abstract—Tremendous growth in cryptocurrency usage
is exposing the inherent scalability issues with permis-
sionless blockchain technology. Payment-channel networks
(PCNs) have emerged as the most widely deployed solution
to mitigate the scalability issues, allowing the bulk of
payments between two users to be carried out off-chain.
Unfortunately, as reported in the literature and further
demonstrated in this paper, current PCNs do not provide
meaningful security and privacy guarantees [32], [42].

In this work, we study and design secure and privacy-
preserving PCNs. We start with a security analysis of exist-
ing PCNs, reporting a new attack that applies to all major
PCNs, including the Lightning Network, and allows an
attacker to steal the fees from honest intermediaries in the
same payment path. We then formally define anonymous
multi-hop locks (AMHLSs), a novel cryptographic primitive
that serves as a cornerstone for the design of secure and
privacy-preserving PCNs. We present several provably
secure cryptographic instantiations that make AMHLs
compatible with the vast majority of cryptocurrencies. In
particular, we show that (linear) homomorphic one-way

i AMH PCN i

I. INTRODUCTION

Cryptocurrencies are growing in popularity and are
playing an increasing role in the worldwide financial
ecosystem. In fact, the number of Bitcoin transactions
grew by approximately 30% in 2017, reaching a peak
of more than 420, 000 transactions per day in December
2017 [2]. This striking increase in demand has given
rise to scalability issues [20], which go well beyond the
rapidly increasing size of the blockchain. For instance,
the permissionless nature of the consensus algorithm
used in Bitcoin today limits the transaction rate to
tens of transactions per second, whereas other payment
networks such as Visa support peaks of up to 47,000
transactions per second [9].

Among the various proposals to solve the scalability
issue [22], [23], [40], [50], payment-channels have
emerged as the most widely deployed solution in prac-
tice. In a nutshell, two users open a payment channel
by committing a single transaction to the blockchain,

Expressiveness and Collateral in
Payment-Channel Networks

Atomic Multi-Channel Updates with Constant Collateral
in Bitcoin-Compatible Payment-Channel Networks

Christoph Egger
Friedrich-Alexander University
Erlangen-Nuremberg

ABSTRACT

Current cryptocurrencies provide a heavily limited transaction
throughput that is clearly insufficient to cater their growing adop-
tion. Payment-channel networks (PCNs) have emerged as an inter-
esting solution to the scalability issue and are currently deployed
by popular cryptocurrencies such as Bitcoin and Ethereum. While
PCNs do increase the transaction throughput by processing pay-
ments off-chain and using the blockchain only as a dispute arbitra-
tor, they unfortunately require high collateral (i.e., they lock coins
for a non-constant time along the payment path) and are restricted
to payments in a path from sender to receiver. These issues have
severe consequences in practice. The high collateral enables denial-
of-service attacks that hamper the throughput and utility of the
PCN. Moreover, the limited functionality hinders the applicability
of current PCNs in many important application scenarios. Unfortu-
nately, current proposals do not solve either of these issues, or they
require Turing-complete language support, which severely limit
their applicability.

Pedro Moreno-Sanchez
TU Wien

Matteo Maffei
TU Wien

1 INTRODUCTION

The permissionless nature of major cryptocurrencies such as Bit-
coin [30] largely hinders their transaction throughput, limiting it to
tens of transactions per second [11]. In contrast, other (centralized)
payment networks such as Visa caters to a vast mass of users and
payments by supporting a transaction throughput of up to tens of
thousands of transactions per second [34]. Thus, permissionless
cryptocurrencies suffer from a severe scalability issue preventing
them from serving a growing base of payments.

In this state of affairs, payment channels have emerged as an
interesting mitigation technique for the scalability issue and is
currently deployed in popular cryptocurrencies such as Bitcoin or
Ethereum [12, 24, 31]. In a nutshell, payment channels aim at es-
tablishing a two-party ledger that two users can privately maintain
without resorting to the blockchain for every payment and yet en-
suring that they can claim their rightful funds in the blockchain at
any given time. For that, users first create a deposit transaction that
establishes on-chain the initial balances for their two-party ledger.

4

Open Challenges

In this work, we identify two open challenges:

e Restricted expressiveness (and functionality)

— Current Bitcoin-compatible PCNs restricted to single path-
based payments

e High collateral
— A payment requires to put aside coins for a very long time

15

Improve Expressiveness Beyond Paths...

» So far we focused on single path-based payments

ik

» Atomic Multi-Path (AMP)T payments: First step towards expressiveness

o
PN dahk

£<:>.1

1 https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-February/000993.html|

16

Our Goal: Full Expressiveness

» Support for arbitrary graph topology

4

Enable new applications:

4
4
4
4

Crowd funding
Channel rebalancing
Netting

Your own application?

o~
re i
i
dahk

17

Collateral

k+fees coins k coins
nA time A time

K\ ... n-2 channels“

Each payment of k coins along an n-channel path requires to put
aside at least kn coins

Also, each user i has to lock her coins for a time A(n-i) where A is
the time to safely close a channel

Coins locked too long!

18

4

4
4

‘/\ﬂ ... n-2 channels ...

Griefing attack

k+fees coins
nA time

The adversary has a time amplification factor of n-1
A is 1 day in the Lightning network!
The attacker can use several paths

19

k+fees coins
nA time

4 0

Our Goal; Constant Collateral

k coins
A time

7 ™

... -2 channels ... Y.

dah

Ai

20

Our Goal: Constant Collateral

k+fees coins k+fees coins k coins

nA time ——— "> Atime A time

/\ /\
... n-2 channels ...)
£ 1 an £

» Constant collateral: Coins are locked only for A time,
independently of the number of channels

20

Our Goal: Constant Collateral

k+fees coins k+fees coins k coins

nA time ——— "> Atime A time

/\ /\
... n-2 channels ... 2
£ il an

» Constant collateral: Coins are locked only for A time,
independently of the number of channels

» Reduces the amplification factor

l

20

Our Goal: Constant Collateral

k+fees coins k+fees coins k coins

nA time ——— "> Atime A time

/\ /\
... n-2 channels ... v
£ 1 an

» Constant collateral: Coins are locked only for A time,
independently of the number of channels

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites’

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

4

20

Our Goal: Constant Collateral

k+fees coins k+fees coins k coins

nA time ——— "> Atime A time

/\ /\
... n-2 channels ... v
£ 1 an &

» Constant collateral: Coins are locked only for A time,
independently of the number of channels

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites’

a) Feasibility of constant locktimes in Bitcoin: Our con-
stant locktimes construction relies on a global contract mech-
anism, which is easily expressed in Ethereum, but cannot (we
conjecture) be emulated in Bitcoin without some modification
to its scripting system. Are there minimal modifications to
Bitcoin script that would enable constant locktimes?

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning.

Our Goal: Constant Collateral

k+fees coins k+fees coins k coins

nA time ——— "> Atime A time

/\ /\
... n-2 channels ...)
‘ ﬂ dh

» Constant collateral: Coins are locked only for A time,
independently of the number of channels

» Reduces the amplification factor
» Feasible in Ethereum-based PCNs: Sprites’

a) Feasibility of constant locktimes in Bitcoin: Our con-
stant locktimes construction relies on a global contract mech- £]
anism, which is easily expressed in Ethereum, but cannot (We ? Apmcu: Constant collateral]
conjecture) be emulated in Bitcoin without some modification V and backwards compatible
to its scripting system. Are there minimal modifications to § with Bitcoin script '
Bitcoin script that would enable constant locktimes?)

1 A. Miller et al. Sprites and State Channels: Payment Networks that Go Faster than Lightning. 20

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

A X4

21

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

Split the channel so
that 2 coins are still
available

21

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30)

A X4

Phase 1 (Setup for A,B)

......................... After some A you get
: (As.Bo): 8 back the money (in
! 3,D3). ;

case of failure in the

' Q/ 3 \ : next phases)
] 3 1
' (A4,Bs): 8)

21

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)

9y,
o
)\ =

To spend you need
money in a fresh
account, which does
not have money yet,
---------------------------- key towards atomicity

: o
§A1 \» (A3,Bs): 8 :
1 1 1

> @ ¢
W w

>

£

W

Nl

oo

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)

{W—\ | | (As,Bs): 7.99 eas: 0.01
“ ‘_. E Q/B5 \ ;

Phase 1 (Setup for A,B)

e —— 7T : Phase 4 (Enable)

: (A1,B1): 10 (A2,B2): 2 : e

E Q/ B \ : : (A3,B3): 8 || (B’3,C3): 7

I (A3,B3): 8 : : }

: %A1 1 |J A3

I e eeemeeesmeeeeeeee=..-—— ' :Q/ Bs \\> (A5,Bs5): 7.99 | eas: 0.01

EQ/ B’s (B’5,Cs): 6.99 | esc: 0.01

Phase 2 (Lock for A,B) 1/ Cs

creates all fresh
......................... addresses in one shot

A Multi-In Multi-Out
Q/ (A4,B4): 8 (MIMO) transaction
As

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)
{W—\) E (As,Bs): 7.99 eas: 0.01 E
[= dh L B \ b
1 BG: 8 :
Phase 1 (Setup for A,B) I A

: : v/ As :
. ' :Q/ Bs (A5,Bs5): 7.99 | eaB: 0.01 |4

'/ B (B’s,Cs): 6.99 | esc: 0.01 |
Phase 2 (Lock for A,B) Y Cs :
'| (As,Bs): 8 f: Setup —> Enable —> Consume

: Bs Setup —> Lock
QQ?A \» (A4,B4): 8 , P
1 3 1

21

Atomic Multi-Channel Updates (ACMU)

8 (out of 10) 7 (out of 30) Phase 3 (Consume for A,B)

W | | (As,Bs): 7.99 eas: 0.01
“ ‘_. E Q/B5 \ ;

Phase 1 (Setup for A,B)

il s Nl ; Phase 4 (Enable)
: (A1,B41): 10 (A2,B2): 2 : e e e
E Q/ B1 \ : : (A3,B3): 8 || (B’3,C3): 7 E
' (A3,B3): 8 : : ¥ '
: %A1 1 |J A3 :
e sccssscssscassssassse.n. .- ' '/ Bs \\> (As,Bs): 7.99 | eas: 0.01 :
'/ B (B’s,Cs): 6.99 | esc: 0.01 |!
Phase 2 (Lock for A,B) ./ Cs :

> @ ¢
& W
>
I
'y
)]

’ Solves ambiguous v/ As \ t
..................... state between Enable ./ Bs (As,Bs): 7.99 | eas: 0.01
and Lock VAL (B's,Cs): 6.99 | esc: 0.01

Security and Privacy Analysis

» AMCU achieves atomicity. In particular:

e |f the coins at one channel are ready to be sent to expected
receiver, then all channels ready to forward payment

e Otherwise, coins remain at a channel owned by original owners
» AMCU does not achieve relationship anonymity

e Every user in the path collaborates with each other
» Instead,

e Constant collateral (coins locked constant time)

e Backwards compatible with current Bitcoin scripting language

e Accountability: Possible to show a proof of misbehavior

22

Take Home...

We can reduce the collateral to a constant and synchronize
multiple transaction atomically

Backwards compatible with Bitcoin script

Formally specified and proven secure in the UC Framework
Advantages:
e Makes the collateral constant

e Enables new classes of off-chain applications (e.g., crowd
funding, channel rebalancing and more?)

To be presented at ACM CCS 2019
Paper available at https://eprint.iacr.org/2019/583.pdf

23

https://eprint.iacr.org/2019/583.pdf

Take Home...

We can reduce the collateral to a constant and synchronize
multiple transaction atomically

Backwards compatible with Bitcoin script

Formally specified and proven secure in the UC Framework
Advantages:
e Makes the collateral constant

e Enables new classes of off-chain applications (e.g., crowd
funding, channel rebalancing and more?)

To be presented at ACM CCS 2019
Paper available at https://eprint.iacr.org/2019/583.pdf

@pedrorechez

23

https://eprint.iacr.org/2019/583.pdf

