O .

Developing secure Bitcoin
contracts with

BitML

Stefano Lande

University of Cagliari Imperial College London University of Trento

Contracts as programs vs contracts as protocols

Contracts as programs ‘/ Contracts as protocols
Complexity of High Low
blockchain design (gas, VM, compilers,...) (well understood security)
Ease of programming ngh Low i
(Solidity, ...) (Protocols + redeem scripts)
Automatic verification Yes No
(sound = not complete) (1 contract » 1 proof)

Can we get the best of both?

(without creating a new coin)

Reveal

Smart contracts on Bitcoin

wit: s sig,(Reveal)

Commit

out: 1 BTC:
fun xo . (H(x)=h and ver,(0))
or afterAbs t: ver (o) wit: % sig,(Timeout)
abslLock: t

Timeout

5 _ Pre-condition:
1) The key pair of C is C' and the key pair of each P; is P;. N
2) The Ledger contains n unredeemed transactions Uf, ..., US, which can be redeemed with key C, each having value d B.
The CS.Commit(C,d,t,s) phase
3) The Committer C computes h = H(s). He sends to the Ledger the transactions Commity,..., Commit,. This obviously means that

he reveals h, as it is a part of each Commit;.

4) If within time max ogger Some of the Commit; transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in
the h value) then the parties abort.

5) The Committer C creates the bodies of the transactions PayDeposit,, ..., PayDeposit,, . signs them and for all i sends the signed body
[PayDeposit;] to P;. If an appropriate transaction does not arrive to P;, then he halts.

The CS.Open(C,d,t,s) phase

6) The Committer C sends to the Ledger the transactions Open, ..., Open, . what reveals the secret s.

7) If within time ¢ the transaction Open; does not appear on the Ledger then F; signs and sends the transaction PayDeposit; to the Ledger
and earns d B.

-

Protocol quoted from: Andrychowicz et al. "Secure multiparty computations on Bitcoin."

3

Languages for Bitcoin scripts

Balzac (unica) IVy (Chain)

transaction T_commit(h, deadline) { contract Commit(kApub,kBpub: PublicKey,
input = A_funds: sig(kA) deadline: Time,

output = this.input.value: h: Sha256(Bytes),

fun(x,s:string) v: Value) {

sha256(s) == h && versig(kApub;x) clause reveal(s: Bytes, x: Signature) {
| | checkDate deadline: versig(kBpubj;x) verify sha256(s) ==
} verify checkSig(kApub, x)

unlock v

Miniscript (Blockstream) }

clause timeout(x: Signature) {
or(

and (pk(A), sha256(H)),
and(pk(B), after(deadline))

verify after(deadline)
verify checkSig(kBpub, x)

unlock v

BitML: Bitcoin Modelling Language

D ::=
withdraw A
split v,»>C |~|v >C
A : D
after t : D
put x . C

reveal a b .. if p

contract

C

guarded contract
transfer balance to A
split balance

wait for A’s authorization
wait until time t

collect deposit x

reveal secrets a, b, ...

A basic example

Precondition: A must put a 1B:
{A:!11B}
Contract:

PayOrRefund = A:withdraw B + B:withdraw A

Problem: if neither A nor B give their authorization, the 1B deposit is frozen

Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.2B)

Escrow = A:withdraw B + B:withdraw A

+ A:Resolve + B:Resolve

Resolve = split
0.2B > withdraw M

| ©0.8B > M:withdraw A + M:withdraw B

The timed commitment in BitML

Precondition:

{A:11B | A:secret a}

Contract:
reveal a. withdraw A

+ after t : withdraw B

The compiled timed commitment

TA

wit: s sig, sig,

Tinit out: 1 BTC:
fun o . ver,(o)
out: 1 BTC:
fun xo o> . (H(x)=h and verAj(o,o’)) B
.)
or afterAbs t: vermB(o,o) wit: 0 sig, sig,

out: 1 BTC:
fun o . ver,(o)
absLock: t

A 2-players lottery

{A:!3B | A:secret a | B:!3B | B:secret b}

split
2B > reveal b . withdraw B
+ after t : withdraw A
|2B > reveal a . withdraw A
+ after t : withdraw B
|2B > reveal a b if a=b . withdraw A

+ reveal a b if a%b . withdraw B

10

A 2-players lottery (fair version)

{A:!3B | A:secret a | B:!3B | B:secret b}

split

2B > reveal b if O0sb=1 . withdraw B
+ after t : withdraw A

|2B > reveal a . withdraw A
+ after t : withdraw B

|2B > reveal a b if a=b . withdraw A

+ reveal a b if a%b . withdraw B

11

Compiler security

BitML

| &

Bitcoin

12

Verification

BitML supports the automatic verification of contract properties.

Contract-dependent properties (expressed as LTL formulae)
TimedCommitment = o<(B knows a or B has 1 BTC)

Liquidity: funds are never “frozen” in the contract (= Eth Parity Wallet)
A:B:withdraw C + A:B:withdraw D

No liquid strategy for A, because A requires the cooperation of B

13

BitML toolchain

'\ BitML
‘ on DrRacket

SECURITY ANALYZER

Properties +
Strategies

3 |
Abstract B.ltML | Model Query
semantics checker result
COMPILER
BitML to Ba'lzac. to Bitcoi'n
Balzac Bitcoin transactions

https://github.com/bitml-lang/

14

https://github.com/bitml-lang/

Benchmarks & tool demo

Contract # Part #Tx Ver. time
v 2 | sam
Escrow 3 12 8s
Coupon Bond 3 18 13s
Lottery 2 8 142 ms
Lottery 4 587 67 h
Rock Paper Scissors 2 23 781 ms
Morra 2 40 674 ms
Auction 2 42 3s

..as ol — L LR)
"
=

All the tx are standard (- they respect the 520-bytes constraint)

15

http://www.youtube.com/watch?v=bxx3bM5Pm6c&t=103

BitML wishlist #1

Bitcoin completeness: extend BitML to make it expressive as Bitcoin

Find participants at runtime
SIGHASH modes add 1 BTC. C

Relative timelocks in 3 days: C

Dynamic stipulation of subcontracts A: B: new C(x)

16

BitML wishlist #2

Currently, each step in the execution of a contract
corresponds to an on-chain transaction

BitML layer 2:

Execute BitML contracts off-chain
In case of dispute, revert to on-chain execution

17

BitML wishlist #3

BitML over Taproot
Exploit forthcoming MAST and Schnorr signatures

Unexecuted script branches remain off-chain
More space efficient
Increases expressivity (520 bytes limit)

Private: hides unexecuted script branches

18

Thank you

BitML toolchain lande@unica.it Balzac online editor

19

References

N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, R. Zunino
Developing secure Bitcoin contracts with BitML. ESEC/FSE, 2019

M. Bartoletti, R. Zunino.
BitML: a calculus for Bitcoin smart contracts. ACM CCS, 2018

M. Bartoletti, R. Zunino
Verifying liquidity of Bitcoin contracts. POST 2019

M. Bartoletti, T. Cimoli, R. Zunino.
Fun with Bitcoin smart contracts. /SOLA 2018

N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, R. Zunino.
SoK: unraveling Bitcoin smart contracts. POST 2018

N. Atzei, M. Bartoletti, S. Lande, R. Zunino.
A formal model of Bitcoin transactions. Financial Cryptography, 2018

20

https://arxiv.org/abs/1905.07639
https://eprint.iacr.org/2018/122.pdf
https://eprint.iacr.org/2018/122.pdf
https://eprint.iacr.org/2018/1125.pdf
https://eprint.iacr.org/2018/398.pdf
https://eprint.iacr.org/2018/398.pdf
https://eprint.iacr.org/2018/192.pdf
https://eprint.iacr.org/2018/192.pdf
http://www.etaps.org/index.php/2018/post
https://eprint.iacr.org/2017/1124.pdf
https://eprint.iacr.org/2017/1124.pdf
http://fc18.ifca.ai/

The BitML toolchain

Paper: https://arxiv.org/abs/1905.07639

Tutorial: https://blockchain.unica.it/bitml

Demo: https://voutu.be/bxx3bM5Pm6¢

Github: https://github.com/bitml-lang

21

https://arxiv.org/abs/1905.07639
https://blockchain.unica.it/bitml
https://youtu.be/bxx3bM5Pm6c
https://github.com/bitml-lang

