

Stefano Lande

Nicola Atzei

Massimo Bartoletti

University of Cagliari

Nobuko Yoshida

Imperial College London

Roberto Zunino

University of Trento

Contracts as programs *vs* contracts as protocols

	<u> </u>		
	Contracts as programs 🔷	Contracts as protocols (§)	
Complexity of blockchain design	High (gas, VM, compilers,)	Low (well understood security)	
Ease of programming	High (Solidity,)	Low (Protocols + redeem scripts)	
Automatic verification	Yes (sound ⇒ not complete)	No (1 contract → 1 proof)	

Can we get the best of both?

(without creating a new coin)

Smart contracts on Bitcoin

Commit

out: 1 BTC: fun $x \sigma$. (H(x)=h and $ver_A(\sigma)$)

or afterAbs t: $ver_{R}(\sigma)$

Reveal

wit: s sig_A(Reveal)

Timeout

wit: * sig_B(Timeout)

absLock: t

Pre-condition:

- The key pair of C is \(\widetilde{C} \) and the key pair of each P_i is \(\widetilde{P}_i \).
- 2) The Ledger contains n unredeemed transactions $U_1^{\mathsf{C}}, \dots, U_n^{\mathsf{C}}$, which can be redeemed with key \widetilde{C} , each having value $d \, \mathcal{B}$.

The CS.Commit(C, d, t, s) phase

- 3) The Committer C computes h = H(s). He sends to the Ledger the transactions $Commit_1, \ldots, Commit_n$. This obviously means that he reveals h, as it is a part of each $Commit_i$.
- 4) If within time max_{Ledger} some of the Commit_i transactions does not appear on the Ledger, or if they look incorrect (e.g. they differ in the h value) then the parties abort.
- 5) The Committer C creates the bodies of the transactions $PayDeposit_1, \ldots, PayDeposit_n$, signs them and for all i sends the signed body $[PayDeposit_i]$ to P_i . If an appropriate transaction does not arrive to P_i , then he halts.

The $\mathsf{CS.Open}(\mathsf{C},d,t,s)$ phase

- 6) The Committer C sends to the Ledger the transactions $Open_1, \ldots, Open_n$, what reveals the secret s.
- 7) If within time t the transaction Open_i does not appear on the Ledger then P_i signs and sends the transaction PayDeposit_i to the Ledger and earns d B.

Languages for Bitcoin scripts

Balzac (UniCa)

```
transaction T_commit(h, deadline) {
input = A_funds: sig(kA)
output = this.input.value:
    fun(x,s:string) .
        sha256(s) == h && versig(kApub;x)
        | | checkDate deadline: versig(kBpub;x)
```

Miniscript (Blockstream)

```
or(
  and(pk(A), sha256(H)),
  and(pk(B), after(deadline))
```

Ivy (Chain)

```
contract Commit(kApub,kBpub: PublicKey,
            deadline: Time,
            h: Sha256(Bytes),
            v: Value) {
  clause reveal(s: Bytes, x: Signature) {
   verify sha256(s) == h
   verify checkSig(kApub, x)
   unlock v
  clause timeout(x: Signature) {
   verify after(deadline)
   verify checkSig(kBpub, x)
   unlock v
```

BitML: Bitcoin Modelling Language

$$C ::= D_1 + \cdots + D_n$$
 contract

withdraw A

split $v_1 \rightarrow C_1 | \cdots | v_n \rightarrow C_n$

A : D

after t : D

put x . C

reveal a b ... if p . C

guarded contract

transfer balance to A

split balance

wait for A's authorization

wait until time t

collect deposit x

reveal secrets a, b, ...

A basic example

Precondition: A must put a 1B:

Contract:

Problem: if neither A nor B give their authorization, the 1B deposit is frozen

Mediating disputes (with oracles)

Resolve disputes via a mediator M (paid 0.2B)

```
Escrow = A:withdraw B + B:withdraw A + A:Resolve + B:Resolve
```

```
Resolve = split 0.2 \  \, \rightarrow \  \, \text{withdraw M} | \quad 0.8 \  \, \rightarrow \  \, \text{M:withdraw A} + \  \, \text{M:withdraw B}
```

The timed commitment in BitML

Precondition:

{A:!1\bar{\B} | A:secret a}

Contract:

reveal a. withdraw A

+ after t : withdraw B

The compiled timed commitment

out: 1 BTC: $\text{fun } x \sigma \ \sigma' \ . \ (\ \text{H}(x) = \text{h and } \text{ver}_{\text{A},\text{B}}(\sigma,\sigma') \) \\ \text{or afterAbs t: } \text{ver}_{\text{A},\text{B}}(\sigma,\sigma')$

TA

wit: $s sig_A sig_B$ out: 1 BTC: fun σ . $ver_A(\sigma)$

TB

wit: 0 $sig_A sig_B$ out: 1 BTC: fun σ . $ver_B(\sigma)$ absLock: t

A 2-players lottery

```
{A:!3\B | A:secret a | B:!3\B | B:secret b}
split
 2B \rightarrow reveal b . withdraw B
     + after t : withdraw A
|2B \rightarrow \text{reveal a} \cdot \text{withdraw A}|
     + after t : withdraw B
|2B \rightarrow reveal a b if a=b . withdraw A
     + reveal a b if a≠b . withdraw B
```

A 2-players lottery (fair version)

```
{A:!3\B | A:secret a | B:!3\B | B:secret b}
split
 2\mathbb{B} \rightarrow \text{reveal b } \mathbf{if} \ \mathbf{0} \leq \mathbf{b} \leq \mathbf{1} . withdraw B
      + after t : withdraw A
|2B \rightarrow \text{reveal a} \cdot \text{withdraw A}|
      + after t : withdraw B
 |2\mathbb{B} \rightarrow \text{reveal a b if a=b} . withdraw A
      + reveal a b if a≠b . withdraw B
```

Compiler security

Verification

BitML supports the automatic verification of contract properties.

Contract-dependent properties (expressed as LTL formulae)

TimedCommitment $\vdash \Box \Diamond (B \text{ knows a or } B \text{ has 1 BTC})$

■ **Liquidity**: funds are never "frozen" in the contract (⇒ Eth Parity Wallet)

A:B:withdraw C + A:B:withdraw D

No liquid strategy for A, because A requires the cooperation of B

BitML toolchain

Benchmarks & tool demo

Contract	# Part	# Tx	Ver. time
Mutual timed commitment	2	15	83 ms
Escrow	3	12	8 s
Coupon Bond	3	18	1.3 s
Lottery	2	8	142 ms
Lottery	4	587	67 h
Rock Paper Scissors	2	23	781 ms
Morra	2	40	674 ms
Auction	2	42	3 s

```
HONOLINE MARKET WILL
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Check Spring 200 The Spring 200 August 200 War Spring Stories
           A COMMERCIAL A Charles No.
           1 | Flang Attnl
                                         Impacts '4' 5 'total' branche '4' a 'seminitiffation bissenion that the actual of the actual transfer of the actua
                                            100pts(1.16.1.100007) (miner 19.16.1447) (classical formation (1000) (state (100) (state (1000) (sta
                                                                                                Preventif the caree thetween in a 111 (agtheron "F"11)
                                                                                                corner comm (workharow "8"))))
                                                                                           (recorded to) cared (between a 8-11) (withdraw 'A'))
                                                                                                cerves note leatherns "6" [111]
                                                                                           (toyestif is b) (prof (= a bit (withdraw "#"))
                                                                                             (remailer hath) (great (its white full histories "W") (it)
                                      infect tiping istrategy 'A' ide recent all!
                                              DEBRU W. Ban-of-least 7
                                                                                                                                                    (10/1) (0:211)
                                                                                     Tetrategy "A" Jan-Howel will
  If I simple - times , either a f a set small rest over the if times - times , vitness 4 20000000 untuit + '42 | * A 10000000 untuit - '07 | 8 | 0 $
(Contra 1990)[1600] with 1 prompt 8 red [al] [22] [32] with 8 AT Contra[3] is after 1888 ( eitherme A a purt mayby assert 2 at 1 [7] size(2) of countril] at (A. 7 attril) for countril] (A. 7 attril) of countril] at (A. 7 attril) of countril] at (A. 7 attril) of countril] at (A. 7 attril) of countril] attril of countril] attril of countril] attril of countril] attril of countril of countr
        (Semine 4s withirs A 200889000 semini from 190) | 1800 | nll | /smart 8 /s8 (a) /s2 (a) /s8 (d) | 8 /s | both (8 ) | 8 /s | 18 /s | 18
     single) - sire(e) witherew 8 - pat copts revise 8 - if size(b) -- size(e) witherew 6 20000000 saturate | w2 | - A 200000000 saturate | w2 | - A 200000000 saturate |
  [[250] | cd | reperts | de ch. [] of ce ch. 
           laterature language from source of
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               STATUTE SELLING E-
```


BitML wishlist #1

Bitcoin completeness: extend BitML to make it expressive as Bitcoin

- Find participants at runtime
- SIGHASH modes
- Relative timelocks

Dynamic stipulation of subcontracts

add 1 BTC. C

in 3 days: C

BitML wishlist #2

Currently, each step in the execution of a contract corresponds to an on-chain transaction

BitML layer 2:

- Execute BitML contracts off-chain
- In case of dispute, revert to on-chain execution

BitML wishlist #3

BitML over Taproot

- Exploit forthcoming MAST and Schnorr signatures
- Unexecuted script branches remain off-chain
 - More space efficient
 - Increases expressivity (520 bytes limit)
- Private: hides unexecuted script branches

Thank you

BitML toolchain

lande@unica.it

Balzac online editor

References

N. Atzei, M. Bartoletti, S. Lande, N. Yoshida, R. Zunino

Developing secure Bitcoin contracts with BitML. ESEC/FSE, 2019

M. Bartoletti, R. Zunino.

BitML: a calculus for Bitcoin smart contracts. ACM CCS, 2018

M. Bartoletti, R. Zunino

Verifying liquidity of Bitcoin contracts. POST 2019

M. Bartoletti, T. Cimoli, R. Zunino.

Fun with Bitcoin smart contracts. ISOLA 2018

N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, R. Zunino.

Sok: unraveling Bitcoin smart contracts. POST 2018

N. Atzei, M. Bartoletti, S. Lande, R. Zunino.

A formal model of Bitcoin transactions. Financial Cryptography, 2018

The BitML toolchain

Paper: https://arxiv.org/abs/1905.07639

Tutorial: https://blockchain.unica.it/bitml

■ Demo: https://youtu.be/bxx3bM5Pm6c

■ Github: https://github.com/bitml-lang

