Proof of Necessary Work
Using Proof of Work to Verify State

Assimakis KATTIS & Joseph BONNEAU

New York University

May 9th 2019

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work



Motivation

A Problem of Size

Bitcoin Scaling Limitations

@ Blockchain size increases linearly over time

o New clients require lots of brandwith & computation to join

Inefficient : All new clients need to do the same verification
work to join the network from the beginning
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Motivation

Our Contributions

Proof of Necessary Work

Proof of Necessary Work : Use PoW to verify transactions

@ Allow light clients to verify state with minimal processing

@ Generate proofs ‘for free’ through PoW
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Proof of Necessary Work

Design Challenge

Proofs of State Validity

Important results from CS Theory :

@ There exist ‘small’ proofs for any NP statement

© Such proofs can verify previous proofs efficiently

Need proofs of state validity that :
@ can verify correctness of the whole chain
@ are small enough to add to the blockchain

@ can be checked with minimal resources

Idea : Use recursive SNARKs!
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Proof of Necessary Work

Proofs of State Validity

Succinct Blockchain Instantiation
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Bitcoin naturally fits Incrementally Verifiable Computation
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Proof of Necessary Work

Prototype Design

Account-based prototype with simple payment functionality

Similar but not equivalent to Bitcoin :

@ No script or UTXOs
@ Doesn’t support MULTISIG or arbitrary transaction types
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Proofs of State Validity

Implementation Results

Succinct blockchain prototype results

#Tx | # Constraints Generator G Prover 77 Verifier V pk Size (GB) | vk Size (kB)| = Size (B)
Avg. () | o) avg ) | o @) Avg. (ms) | o (%)

i 141804 14.95 031 2781 012 565 195 0.19

5 1561292 93.63 047 5460 04 547 042 043

10 | 2960652 14357 070 85.09 0.30 543 060 0.75 Lo .

15 | 4360012 19098 076 11540 0.00 552 032 1.00

W | 5739572 23465 079 140.93 015 552 057 129

3| 7T 27548 093 156.29 026 553 045 162

TABLE 2. PROTOTYPE TIMES AND KEY SIZES FOR PREDICATES VERIFYING DIFFERENT NUMBERS OF TRANSACTIONS: AVERAGE RUNNING TIMES
FOR SETUP §. PROVER P AND VERIFIER V OVER 10 ITERATIONS ARE SHOWN ALONGSIDE PROVING/VERIFICATION KEY AND PROOF SIZES.

Benchmark : AWS ra5.2xlarge with 8 cores and 64GB of RAM




Proof of Necessary Work

What did we achieve ?

Our prototype :

@ produces block headers of size < 500 bytes for any number
of transactions per block

o allows stateless clients to verify a block in < 60ms

e can achieve throughput of 100 tx/block using libsnark

Problem : The proofs take a long time to generate

Idea : Create them as part of the PoW process!
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Proof of Necessary Work

PoW from Proof Generation
Initial Approach

Generate 7 and accept if H(m) < d, repeat otherwise

Need to add a random nonce to the proof every iteration

@ Nonce is randomly sampled, changing 7

o Probability of success is exponentially distributed

Problem : We can change n without recomputing all of m

Process favors returns to scale, leading to centralization !
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Proof of Necessary Work
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Proof of Necessary Work

Modelling Proof Generation

Need to ensure our predicate is ‘hard’ to solve in general

@ We model this using a ‘hardness’ oracle O
o O simulates hard computations used to generate

@ Prover has access to O but can reuse previous information

In current succinct SNARK implementations, O provides access
to modular exponentiation in some group G

Reduces to hardness in the Generic Group Model (GGM) !
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Proof of Necessary Work

Formalizing the Model

Definition (e-Hardness)

For ¢ € poly()\) and length \ inputs, f© is e-hard if V.A
performing less than (1 — €) N/ queries to oracle O, where N
number of queries required for one evaluation of €, the
following is negligible in A :

Vi€ [€],m = fO(a) {mi,ai}i_; < A(1*)

P Visje o £ as it

Intuition : A large prover only gets an € advantage from
previous computation when generating proofs
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Proof of Necessary Work

Committing to the Nonce
Leveling the Playing Field

We hope to solve this by committing to the nonce in the proof

e Valid blocks now a (sensitive) function of n
e Changing any input leads to an invalid configuration

o Prevents previous proofs from inducing speedups

Computing proofs with random n prevents returns to scale

Result : Miners have to compute the whole proof
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Proof of Necessary Work

Adding Nonce to State

Altering Merkle Computations

Account-based models keep state in a Merkle tree :

@ Checks old Merkle paths
© Computes new Merkle paths

@ Checks that signature and amounts are valid

Idea #1 : Link state and nonce through a ‘seed’ parameter :
p = H(n|state). Requires only one verification of a PRF H

Result : Altering any part of the input means a new valid p is
required, which is unpredictable by the security of H
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Proof of Necessary Work

Creating Hard Predicates

State verification happens without the seed. Most computation
(~97%) in current account-based models verify Merkle paths

Problem : This only requires access to state! An adversary can
reuse work as p doesn’t alter the vast majority of computation

Goal : Alter predicate to embed p in the verification process
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Proof of Necessary Work

Strawman : Insert n in every updated leaf. New Merkle paths
then change unpredictably as a function of the nonce

If we could inject our nonce in all Merkle paths, would be done

Problem : We only alter half of them! Gives an e ~ 1/2

New Idea : Modify hash function by ‘cloaking’ it with p

Design Challenge : Modify our hash function to use p ‘almost
everywhere’, while outputting the same result as before
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Proof of Necessary Work

Cloaking the Pedersen Hash

For generators {g;};.; in Z, an n-bit Pedersen hash is :
n
H(z) = Hgfl where x; the i-th bit of
i=1

Idea # 2 : Compute H(p) and then calculate H (z & p, H(p))

Can compute H(p) once per block. We can then use this with a
transformation H for which H (z @ p,,H(p)) = H(z) for any =

Efficiency : Need to verify the XOR input. Adds O(n)
overhead for a ~ 20% increase in proving time per H circuit
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Proof of Neces

Root
Output
(H(left) | H(right))
Input XOR seed
H(H(ac_1)|H(ac_2)) H(right)
(H(ac_1) | H(ac_2)) C—
XOR seed
H(ac_1) H(ac_2) H(seed)
ac_1l XOR seed seed
[: ¢
Transaction
Account 1 Seed Data
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Proof of Necessary Work

Putting it all together

We demonstrate how to cloak predicates with a nonce n,
making information reuse impossible

€ ~ 3% with overhead ~ 20% per block in our predicate when
implementing the previous ideas w/o optimization

For our 20 tx predicate, this means € > 0.3% if using SHA
€ > |Cpre|/|CBlock| becomes our lower-bound
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Proof of Necess

Proof Chains

Improving System Throughput

Discarding previous proofs is also wasteful - can we do better ?

We propose ‘Proof Chains’, an extension to PoONW that :

@ requires miners to build on top of previous proofs

@ submits all proofs in the chain when difficulty is satisfied

Result : Throughput increase ‘for free’ in our implementation

eph BONNEAU Proof of Necessary Work



Proof of Necessary Work

Related Work

An ideal proof system would :

@ require verifier succinctness (for efficient IVC),
@ also be trustless (no trusted setup),

© and gquantum-resistant.
Recent work is rapidly approaching these capabilities

Since our modifications are on the predicate layer, such
improvements are complementary to our approach

Remark : Our design uses IVC as a black box. Can switch in
any proof system that does IVC with the same guarantees
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Proof of Necessary Work

Future Work

We identify various areas for future work :
o Generalize to arbitrary proof systems

@ Design cloaking properties for other (faster) hash functions

e Extend to full Bitcoin functionality (soft fork ?)

Contact : kattis@cs.nyu.edu
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