Proof of Necessary Work
Using Proof of Work to Verify State

Assimakis KATTIS & Joseph BONNEAU

New York University

May 9th 2019

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Motivation

A Problem of Size

Bitcoin Scaling Limitations

@ Blockchain size increases linearly over time

o New clients require lots of brandwith & computation to join

Inefficient : All new clients need to do the same verification
work to join the network from the beginning

KarTis seph BONNEAU 0 ssary Work

Motivation

Our Contributions

Proof of Necessary Work

Proof of Necessary Work : Use PoW to verify transactions

@ Allow light clients to verify state with minimal processing

@ Generate proofs ‘for free’ through PoW

Assimakis KATT seph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Design Challenge

Proofs of State Validity

Important results from CS Theory :

@ There exist ‘small’ proofs for any NP statement

© Such proofs can verify previous proofs efficiently

Need proofs of state validity that :
@ can verify correctness of the whole chain
@ are small enough to add to the blockchain

@ can be checked with minimal resources

Idea : Use recursive SNARKs!

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Proofs of State Validity

Succinct Blockchain Instantiation

Sic1 + ti > 8 + tir> Sita
NV SN

'Pi Pit1
/ o\ / 4
Ti—1 T Ti+1
Si—1 S;
v v
’I’ti_l ’I“tz

™ V> {0,1} \v- - {0,1}
/ 7 3 / it)

Ti—1 Uy
Light Client

Bitcoin naturally fits Incrementally Verifiable Computation

Assimakis KATTI seph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Prototype Design

Account-based prototype with simple payment functionality

Similar but not equivalent to Bitcoin :

@ No script or UTXOs
@ Doesn’t support MULTISIG or arbitrary transaction types

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proofs of State Validity

Implementation Results

Succinct blockchain prototype results

#Tx | # Constraints Generator G Prover 77 Verifier V pk Size (GB) | vk Size (kB)| = Size (B)
Avg. () | o) avg) | o @) Avg. (ms) | o (%)

i 141804 14.95 031 2781 012 565 195 0.19

5 1561292 93.63 047 5460 04 547 042 043

10 | 2960652 14357 070 85.09 0.30 543 060 0.75 Lo .

15 | 4360012 19098 076 11540 0.00 552 032 1.00

W | 5739572 23465 079 140.93 015 552 057 129

3| 7T 27548 093 156.29 026 553 045 162

TABLE 2. PROTOTYPE TIMES AND KEY SIZES FOR PREDICATES VERIFYING DIFFERENT NUMBERS OF TRANSACTIONS: AVERAGE RUNNING TIMES
FOR SETUP §. PROVER P AND VERIFIER V OVER 10 ITERATIONS ARE SHOWN ALONGSIDE PROVING/VERIFICATION KEY AND PROOF SIZES.

Benchmark : AWS ra5.2xlarge with 8 cores and 64GB of RAM

Proof of Necessary Work

What did we achieve ?

Our prototype :

@ produces block headers of size < 500 bytes for any number
of transactions per block

o allows stateless clients to verify a block in < 60ms

e can achieve throughput of 100 tx/block using libsnark

Problem : The proofs take a long time to generate

Idea : Create them as part of the PoW process!

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

PoW from Proof Generation
Initial Approach

Generate 7 and accept if H(m) < d, repeat otherwise

Need to add a random nonce to the proof every iteration

@ Nonce is randomly sampled, changing 7

o Probability of success is exponentially distributed

Problem : We can change n without recomputing all of m

Process favors returns to scale, leading to centralization !

Assimakis KaAT ; Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

tx'tx tlx t‘x tx t‘x n

Prover

tlx t‘x t‘x tlx tx tlx q

Proof

Prover —>
t‘x tlx t‘x t‘x t‘x tx rll

Prover
Proof (2) :

Proof

oseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Modelling Proof Generation

Need to ensure our predicate is ‘hard’ to solve in general

@ We model this using a ‘hardness’ oracle O
o O simulates hard computations used to generate

@ Prover has access to O but can reuse previous information

In current succinct SNARK implementations, O provides access
to modular exponentiation in some group G

Reduces to hardness in the Generic Group Model (GGM) !

Assimakis KaAT ; Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Formalizing the Model

Definition (e-Hardness)

For ¢ € poly()\) and length \ inputs, f© is e-hard if V.A
performing less than (1 — €) N/ queries to oracle O, where N
number of queries required for one evaluation of €, the
following is negligible in A :

Vi€ [€],m = fO(a) {mi,ai}i_; < A(1*)

P Visje o £ as it

Intuition : A large prover only gets an € advantage from
previous computation when generating proofs

oseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Committing to the Nonce
Leveling the Playing Field

We hope to solve this by committing to the nonce in the proof

e Valid blocks now a (sensitive) function of n
e Changing any input leads to an invalid configuration

o Prevents previous proofs from inducing speedups

Computing proofs with random n prevents returns to scale

Result : Miners have to compute the whole proof

Assimakis KaAT ; Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Adding Nonce to State

Altering Merkle Computations

Account-based models keep state in a Merkle tree :

@ Checks old Merkle paths
© Computes new Merkle paths

@ Checks that signature and amounts are valid

Idea #1 : Link state and nonce through a ‘seed’ parameter :
p = H(n|state). Requires only one verification of a PRF H

Result : Altering any part of the input means a new valid p is
required, which is unpredictable by the security of H

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Creating Hard Predicates

State verification happens without the seed. Most computation
(~97%) in current account-based models verify Merkle paths

Problem : This only requires access to state! An adversary can
reuse work as p doesn’t alter the vast majority of computation

Goal : Alter predicate to embed p in the verification process

Assimakis KaAT ; Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Strawman : Insert n in every updated leaf. New Merkle paths
then change unpredictably as a function of the nonce

If we could inject our nonce in all Merkle paths, would be done

Problem : We only alter half of them! Gives an e ~ 1/2

New Idea : Modify hash function by ‘cloaking’ it with p

Design Challenge : Modify our hash function to use p ‘almost
everywhere’, while outputting the same result as before

oseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Cloaking the Pedersen Hash

For generators {g;};.; in Z, an n-bit Pedersen hash is :
n
H(z) = Hgfl where x; the i-th bit of
i=1

Idea # 2 : Compute H(p) and then calculate H (z & p, H(p))

Can compute H(p) once per block. We can then use this with a
transformation H for which H (z @ p,,H(p)) = H(z) for any =

Efficiency : Need to verify the XOR input. Adds O(n)
overhead for a ~ 20% increase in proving time per H circuit

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proof of Neces

Root
Output
(H(left) | H(right))
Input XOR seed
H(H(ac_1)|H(ac_2)) H(right)
(H(ac_1) | H(ac_2)) C—
XOR seed
H(ac_1) H(ac_2) H(seed)
ac_1l XOR seed seed
[: ¢
Transaction
Account 1 Seed Data

eph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Putting it all together

We demonstrate how to cloak predicates with a nonce n,
making information reuse impossible

€ ~ 3% with overhead ~ 20% per block in our predicate when
implementing the previous ideas w/o optimization

For our 20 tx predicate, this means € > 0.3% if using SHA
€ > |Cpre|/|CBlock| becomes our lower-bound

Assimakis KaAT ; Joseph BONNEAU Proof of Necessary Work

Proof of Necess

Proof Chains

Improving System Throughput

Discarding previous proofs is also wasteful - can we do better ?

We propose ‘Proof Chains’, an extension to PoONW that :

@ requires miners to build on top of previous proofs

@ submits all proofs in the chain when difficulty is satisfied

Result : Throughput increase ‘for free’ in our implementation

eph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Related Work

An ideal proof system would :

@ require verifier succinctness (for efficient IVC),
@ also be trustless (no trusted setup),

© and gquantum-resistant.
Recent work is rapidly approaching these capabilities

Since our modifications are on the predicate layer, such
improvements are complementary to our approach

Remark : Our design uses IVC as a black box. Can switch in
any proof system that does IVC with the same guarantees

Assimakis KaTTis & Joseph BONNEAU Proof of Necessary Work

Proof of Necessary Work

Future Work

We identify various areas for future work :
o Generalize to arbitrary proof systems

@ Design cloaking properties for other (faster) hash functions

e Extend to full Bitcoin functionality (soft fork ?)

Contact : kattis@cs.nyu.edu

Assimakis KAT ; Joseph BONNEAU

Proof of Necessary Work

	Motivation
	Proof of Necessary Work

