
Storm: layer 2/3 storage & messaging

contributors:

Maxim Orlovsky, PhD, MD
Chief Engineering Officer,
Pandora Core AG, Swiss

Giacomo Zucco,
Federico Tenga, Chainside
Marco Amadori, inbitcoin
Martino Salvetti, inbitcoin
Nicola Busanello, inbitcoin
Sabina Sachtachtinskagia, Pandora Core
Stefan Richter @stefanwouldgo
ZmnSCPxj
...

or «a favorite shitcoins use case is being destroyed with Bitcoin L2»

• Lightning Network channel state history

• Eltoo channel state

• Scriptless scripts

• Single-use seals off chain data

• … much more

We need economic incentives for all of that!!!

Problem: storage

Yes, by utilizing

• Probabilistically checkable proofs

• HTLCs

• PBST

Can it be trestles but guaranteed?

• Bob stores data for Alice

• Alice must be guaranteed to receive Bobs money if she stored the
data – no matter if Bob is still interested in receiving the data
or running with the data away without paying once he has the data

• Bob must be compensated if Alice fails to keep the data

Bob may encrypt the data, split the data across different Alice(s)
etc

Setting

• Bob can proof the fact that he has the data in a succinct way
both to Alice and on-chain with the current Bitcoin script by
utilizing probabilistically checkable proofs

• Alice gets obscured data from Bob encrypted with his yet unknown
public key and is able to decrypt them only when the Bob takes
his payment

Intuition for core "tricks"

Probabilistically checkable proofs

#

Source data

M
erklezation

Random selection of data pieces for probabilistic proofs

• Bob stores data for Alice

• Alice puts payment and Bob puts stake under escrowed time locked
contract

Steps

#0

#1

2

3

input (possible multiple)
with at least `reward`
amount coming from
Alice

`stake+reward` output
#0

Bob#Alice#

Funding transaction (on-chain)

nTimeLock: 0x00

nSequence: 0x00

input(s) with at least
`stake` amount coming
from Bob

nSequence: 0x00

Bob

– by cooperative closing:
Alice provides Bob with HTLC
transaction

– by delay: in case Alice did
not appear with a request for
the data, Bob takes both
stake and reward for himself

#

Alice Alice

BobBob

#0

#1

Signature

Public key

Unsigned

Hash value of everything
that follows after this sign

Legend:

On-chain transaction

Partially-signed transaction

Signature

Public key

Unsigned

Local party: Remote party:

#
Secret (like decryption key)

OP_CSV

1
Final outcome numbered
according to the list
of possible scenarios

• Bob stores data for Alice

• Alice puts payment and Bob puts stake under escrowed time locked
contract

• They pre-sign partial transactions for different scenarios

Steps

• If Alice forgets about her data,
Bob still takes the payment for
storage and his stake back

Closing scenarios: Alice timeout

#0

#1

2

3

input (possible multiple)
with at least `reward`
amount coming from
Alice

`stake+reward` output
#0

Bob#Alice#

Funding transaction (on-chain)

nTimeLock: 0x00

nSequence: 0x00

input(s) with at least
`stake` amount coming
from Bob

nSequence: 0x00

Bob

– by cooperative closing:
Alice provides Bob with HTLC
transaction

– by delay: in case Alice did
not appear with a request for
the data, Bob takes both
stake and reward for himself

#

Alice Alice

BobBob

#0

#1

• Bob encrypts Alice data
with some public and
private key pair

• Bob constructs special
PCP proof showing Alice
that he has really
encrypted the original
data

#

Source data

Encrypted data

M
erklezation

M
erklezation

Random selection of data pieces for probabilistic proofs

Decryption key hash Encrypted data

BOB ("STORAGE PROVIDER")

ALICE ("USER")

#

Encryption key

zk PCP Proof

Decryption key

#Hashing

• If Alice is happy with Bob’s proof,
she signs pre-signed Bob’s
transaction.

• When Bob claims funds from #0 output, 
he reveals encryption key, so Alice
is able to decrypt her data

Closing scenarios: cooperative

Bob

spends output from the
HTLC confirmation tx

#0 #0
– cooperative: Bob has to
expose decryption key in
order to access the funds.
This private key is used by
Alice to decrypt the data

– by delay: if Bob does not
takes the reward and his
stake within some pre-
defined time, leaving Alice
without an ability to access
the data, she can claim both
reward and Bob’s stake for
herself

Alice

Bob

HTLC settlement transaction (pre-signed by Bob)

nTimeLock: ____

Bob

3#

#

#
Alice

nSequence: ____

Alice

1

• If Alice is happy with Bob’s
proof, she signs pre-signed Bob’s
transaction

Closing scenarios: cooperative

Bob

spends output from the
HTLC confirmation tx

#0 #0
– cooperative: Bob has to
expose decryption key in
order to access the funds.
This private key is used by
Alice to decrypt the data

– by delay: if Bob does not
takes the reward and his
stake within some pre-
defined time, leaving Alice
without an ability to access
the data, she can claim both
reward and Bob’s stake for
herself

Alice

Bob

HTLC settlement transaction (pre-signed by Bob)

nTimeLock: ____

Bob

3#

#

#
Alice

nSequence: ____

Alice

1 • If Bob disappears after that,
Alice will be able to get her
money back plus Bob’s stake to
compensate the loss of the data

• If Alice is not happy with Bob’s
proof, she signs another pre-
signed Bob’s transaction

Closing scenarios: non-cooperative

• with it, after some delay she will
get both her money and Bob’s stake
to compensate the loss of the data

spends output from the
funding transaction via
the multisig option

– appeal: stake and
some pre-defined portion
of reward go to Bob if he
can proof that he still
holds Alice data

#0

HTLC fallback transaction (pre-signed by Alice)

nTimeLock: _____

nSequence: _____

BobAlice

2# Bob#BobAlice

– default:
`stake+reward*factor` go
back to Alice after some
delay

Alice#

the rest of reward go
back to Alice anyway, as
a compensation for client
dissatisfaction

#1

Alice#

• If Alice is not happy with Bob’s
proof, she signs another pre-signed
Bob’s transaction

• Bob can appeal to that and prove that
he has actually kept the data. He has
to provide a pre-image composed of
parts of the data selected according
to the Alice public key exposed to
Bob by this closing transaction

• In this case Bob still gets his stake
back plus the reward (or part of the
reward, since Alice as a client is
unhappy)

Closing scenarios: non-cooperative

spends output from the
funding transaction via
the multisig option

– appeal: stake and
some pre-defined portion
of reward go to Bob if he
can proof that he still
holds Alice data

#0

HTLC fallback transaction (pre-signed by Alice)

nTimeLock: _____

nSequence: _____

BobAlice

2# Bob#BobAlice

– default:
`stake+reward*factor` go
back to Alice after some
delay

Alice#

the rest of reward go
back to Alice anyway, as
a compensation for client
dissatisfaction

#1

Alice#

• At setup time Alice uses her newly-derived public key for both
funding transaction output and deterministic definition of some
small portion of the source data.

• This portion of the data is double-hashed to 160-bit hash and
included into HTLC fallback tx by Alice as a hash lock.

• When Bob wants to prove that he still has the data available, he
see the published HTLC transaction, extracts Alice public key and
uses it to get the same deterministic piece of the source data as
Alice. Bob computes a single hash on the data, which gives him a
preimage to unlock the hash lock from the HTLC transaction output
before Alice will spend it (Alice's branch is timelocked).

Bob’s proof of data storage

• If Alice is not happy with Bob’s
proof, she signs another pre-signed
Bob’s transaction

• Bob can appeal to that and prove that
he has actually kept the data. He has
to provide a pre-image composed of
parts of the data selected according
to the Alice public key exposed to
Bob by this closing transaction

• In this case Bob still gets his stake
back plus the reward (or part of the
reward, since Alice as a client is
unhappy)

Closing scenarios: non-cooperative

spends output from the
funding transaction via
the multisig option

– appeal: stake and
some pre-defined portion
of reward go to Bob if he
can proof that he still
holds Alice data

#0

HTLC fallback transaction (pre-signed by Alice)

nTimeLock: _____

nSequence: _____

BobAlice

2# Bob#BobAlice

– default:
`stake+reward*factor` go
back to Alice after some
delay

Alice#

the rest of reward go
back to Alice anyway, as
a compensation for client
dissatisfaction

#1

Alice#

• Alice needs to store only seed phrase to keep all here L2/L3 data

• Incentivization for watchtowers and other schemes

• Potentially can be done on top of Lightning Network: zero
transactions will reach blockchain

Why important?

• The same security assumptions as for ZP: proofs are probabilistic

• Bob can cheat with hash of the decryption key. ZK can be used to
avoid that, but this will be very computationally-expensive.

• Tradeoff between protecting data storage providers from DDoS attacks
and protecting clients from being wrong-treated by data storage
providers

• adjustable parameter in each case

• reputation system for storage providers may help

• storage redundancy for critical data for anonymous providers is
required

Limitations

Potentially can be done on top of Lightning Network: zero
transactions will reach blockchain

What’s next?

• https://github.com/storm-org/storm-spec

• https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-
August/017269.html

• https://bitcoinmagazine.com/articles/dr-maxim-orlovsky-on-storm-
and-bitcoin-l2-l3-file-storage

To find out more

https://github.com/storm-org/storm-spec
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017269.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017269.html
https://bitcoinmagazine.com/articles/dr-maxim-orlovsky-on-storm-and-bitcoin-l2-l3-file-storage
https://bitcoinmagazine.com/articles/dr-maxim-orlovsky-on-storm-and-bitcoin-l2-l3-file-storage

• https://twitter.com/dr_orlovsky

• https://github.com/dr-orlovsky

• @dr_orlovsky on Telegram

• orlovsky@pandoracore.com

https://tippin.me/@dr_orlovsky

bc1qdzyxmdjqq4cl2k2u4kp8vash3t2qhtfvnswhnu

Ways to contact me

https://twitter.com/dr_orlovsky
https://github.com/dr-orlovsky
mailto:orlovsky@pandoracore.com
https://tippin.me/@dr_orlovsky

