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ZkVM is a multi-asset blockchain architecture with 
contracts and confidentiality. 

It is designed to scale, it is fast, and it’s written in pure Rust.

TL;DR

github.com/stellar/slingshot



1. Explain the good parts. 

2. Explain away the bad parts.

AGENDA



ZkVM is a unique combination of the best ideas from Bitcoin devs. 

It is a preview of what Bitcoin may look like in the future.
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ZkVM ARCHITECTURE



TRANSACTIONS

Tx = program that transfers assets from inputs to outputs. 
Transactions can also issue arbitrary assets.
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UTREEXO
blockchain state

spending proof

unspent outputs

spent output

...

based on original proposal by Thaddeus Dryja



UTREEXO
Pros 
• Storage is free: simplifies protocol. 
• More nodes can be full nodes. 

Cons 
• Every node has to update their utxo proofs. 
• Extra bandwidth overhead (negligible with caching).



PROGRAM EXECUTION

Transaction is a program, cryptographic proof and some metadata.
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PROGRAM EXECUTION

VM instantiated per transaction; discarded after tx is processed. 

High-level instructions enforce network rules. 

Not turing-complete by design.
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PROGRAM EXECUTION

Instructions build a constraint system (CS) on the fly. 

CS enforces both network rules and custom, per-contract rules. 

Single aggregated proof is used to verify all the constraints.
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PROGRAM EXECUTION

Transaction verification is stateless. 

Created/deleted outputs are recorded in the transaction log. 

Transactions log is applied to the blockchain state separately.
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CONTRACTS

Each unspent output is a contract object. 

Contract has arbitrary payload (assets, data) protected by a predicate. 

Saved via output instruction, loaded via input instruction.
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CONTRACTS

Predicate is satisfied with either a signature...
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CONTRACTS

Predicate is satisfied with either a signature or a sub-program. 
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P = K + hash(K, R)·B

TAPROOT

pubkey 
K = k·B

program 1 program 2 program 3 program 4

Compresses contract logic into a single public key. 
Either sign with K, or reveal a branch and execute it. 

based on original proposal by Gregory Maxwell



INSTRUCTIONS
Variables 

const 
var 
alloc 
mintime 
maxtime 
unblind 

Values 

issue 
borrow 
retire 
cloak:m:n 

Contracts 

input 
output:k 
contract:k 
log 
call 

signtx 
signid 
signtag

Stack 

push:n:x 

program:n:x 
drop 
dup:k 
roll:k 

Constraints 

neg 
add 
mul 
eq 
range:n 
and 
or 

not 
verify



INSTRUCTIONS
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Bitcoin: 88         Ethereum: 77         Miniscript: 26         ZkVM: 33 instructions



CRYPTOGRAPHY STACK

Vectorized elliptic curve operations.Curve25519-Dalek
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Ristretto255
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Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.
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Network rules + custom rules.
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Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.
pure Rust

Cloak Constraints

Instructions

Your protocol

Network rules + custom rules.

Arithmetic + boolean operations.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Vaults, payment channels, order books, ...



CONSTRAINTS

(P = B + R·T) OR (X = Y)

Ad-hoc composition of arithmetic and boolean expressions:

R T mul B add P eq X Y eq or verify



CONSTRAINTS



Constraints 

neg 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EX: CUSTOM CONSTRAINTS

Create variables from commitments, make expressions, 

form constraints and add them to the constraint system.
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Values 

issue 
borrow 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EX: CUSTOM CONSTRAINTS

A variable defines a payment constraint with borrow + output.  
Negative value is mixed with an actual payment in the cloak.

+V

–V
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LINEAR TYPES + CAPABILITIES

In ZkVM contracts imperatively express their requirements, 
entirely avoiding bugs like confused deputy problem.



ZkVM TRADEOFFS



NOT TURING-COMPLETE

ZkVM optimized for financial uses, not arbitrary computations: 

• issuing tokens and fundraising, 

• multi-party vaults, 

• derivative instruments, 

• payment channels. 



O(n) BLOCKCHAIN

• Only zkSNARKs allow efficient compression (e.g. Coda). 

• SPV clients use ≈50x less traffic than full blocks. 

• Bootstrap from trusted source via Utreexo roots. 



PRIVACY FEATURES
Private 

Asset types 

Asset quantities 

Data parameters 

In-transaction flow

Not private 

Programs 

Transaction graph
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PRIVACY FEATURES
Private 

Asset types 

Asset quantities 

Data parameters 

In-transaction flow

Not private 

Programs 

Transaction graph 

CoinJoin scales better. 
Hiding UTXO links requires  
O(n) storage (nullifiers).

Taproot reveals only in 
dispute and only a 
specific branch.



PERFORMANCE



PERFORMANCE
Fast1 <1 ms per output (up to 1000 tx/sec).

• vectorized implementation of Curve25519, 
• signature aggregation, 
• state of the art multi-scalar multiplication, 
• ≈1.5 Kb/proof, marginal cost 0.2–0.5 Kb/transfer.



PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

• rangeproofs for output values bear most of the cost, 
• signatures and custom constraints: 1-5% overhead. 

<1 ms per output (up to 1000 tx/sec).



PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

Scales with privacy3 Aggregation saves space and time.

• proof size is log(N), marginal cost goes to zero, 
• larger batches of ECC operations take N/log(N) time. 

<1 ms per output (up to 1000 tx/sec).



PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

Scales with privacy3 Aggregation saves space and time.

Free storage4 Utreexo makes storage costs negligible.

• storage costs log(N) (≈1 kilobyte without caching), 
• bandwidth overhead is 5-10% with caching  

(+ tens of megabytes) 

<1 ms per output (up to 1000 tx/sec).



SMALL AND SAFE
Small, pure-Rust codebase: 

 6K LOC         zkvm + utreexo + blockchain (w/o consensus) 

 7K LOC         schnorr + musig + keytree + bulletproofs 

 14K LOC      curve25519 + ristretto255 

Assumptions: 

 ECDLP on Curve25519 

 Keccak (SHAKE128) is a random oracle



LEARN MORE & PARTICIPATE

Code and specs: 

github.com/stellar/slingshot 

See also: 

github.com/dalek-cryptography/bulletproofs 

ristretto.group 

merlin.cool

https://github.com/dalek-cryptography/bulletproofs
https://ristretto.group
https://merlin.cool


THANK YOU

Oleg Andreev 
@oleganza

ZkVM

bulletproofs

Project Slingshot is sponsored by Stellar Development Foundation.


