
ZkVM
 FAST,
 PRIVATE,
 FLEXIBLE
BLOCKCHAIN CONTRACTS

 Oleg Andreev
 Tel Aviv, Israel
September 11-12, 2019

ZkVM is a multi-asset blockchain architecture with
contracts and confidentiality.

It is designed to scale, it is fast, and it’s written in pure Rust.

TL;DR

github.com/stellar/slingshot

1. Explain the good parts.

2. Explain away the bad parts.

AGENDA

ZkVM is a unique combination of the best ideas from Bitcoin devs.

It is a preview of what Bitcoin may look like in the future.

IS IT ABOUT BITCOIN?

payment channels

zcash
bitcoin

ethereum

monero coinjoin

zksnarks

ring signatures

mimblewimble

bulletproofsutreexo

musig

bls signatures

taproot

txo mmr

recursive snarks

object capabilities

linear types

ristretto

ZkVM ARCHITECTURE

TRANSACTIONS

Tx = program that transfers assets from inputs to outputs. 
Transactions can also issue arbitrary assets.

tx 1

input

input

output

tx 2

input

output

output

tx 3

input

output

output

UTREEXO
blockchain state

spending proof

unspent outputs

spent output

...

based on original proposal by Thaddeus Dryja

UTREEXO
Pros
• Storage is free: simplifies protocol.
• More nodes can be full nodes.

Cons
• Every node has to update their utxo proofs.
• Extra bandwidth overhead (negligible with caching).

PROGRAM EXECUTION

Transaction is a program, cryptographic proof and some metadata.

TX

program

zk proof

PROGRAM EXECUTION

VM instantiated per transaction; discarded after tx is processed.

High-level instructions enforce network rules.

Not turing-complete by design.

VM

program

stack

txlog

constraint
system

TX

program

zk proof

run

PROGRAM EXECUTION

Instructions build a constraint system (CS) on the fly.

CS enforces both network rules and custom, per-contract rules.

Single aggregated proof is used to verify all the constraints.

VM

program

stack

txlog

constraint
system

TX

program

zk proof

verify

run

PROGRAM EXECUTION

Transaction verification is stateless.

Created/deleted outputs are recorded in the transaction log.

Transactions log is applied to the blockchain state separately.

VM

program

stack

txlog

constraint
system

applyTX

program

zk proof

run blockchain 
state

CONTRACTS

Each unspent output is a contract object.

Contract has arbitrary payload (assets, data) protected by a predicate.

Saved via output instruction, loaded via input instruction.

contract

predicate

item 1

item 2

item 3

CONTRACTS

Predicate is satisfied with either a signature...

contract

predicate

item 1

item 2

item 3

item 1

item 2

item 3

verify

signature
unlock

CONTRACTS

Predicate is satisfied with either a signature or a sub-program.

contract

predicate

item 1

item 2

item 3

item 1

item 2

item 3

execute

sub-program
unlock

P = K + hash(K, R)·B

TAPROOT

pubkey
K = k·B

program 1 program 2 program 3 program 4

Compresses contract logic into a single public key.
Either sign with K, or reveal a branch and execute it.

based on original proposal by Gregory Maxwell

INSTRUCTIONS
Variables

const 
var 
alloc 
mintime 
maxtime 
unblind

Values

issue 
borrow 
retire 
cloak:m:n 

Contracts

input 
output:k 
contract:k 
log 
call

signtx 
signid 
signtag

Stack

push:n:x

program:n:x 
drop 
dup:k 
roll:k 

Constraints

neg 
add 
mul 
eq 
range:n 
and 
or

not 
verify

INSTRUCTIONS
Variables

const 
var 
alloc 
mintime 
maxtime 
unblind

Values

issue 
borrow 
retire 
cloak:m:n 

Contracts

input 
output:k 
contract:k 
log 
call

signtx 
signid 
signtag

Stack

push:n:x

program:n:x 
drop 
dup:k 
roll:k 

Constraints

neg 
add 
mul 
eq 
range:n 
and 
or

not 
verify

Bitcoin: 88 Ethereum: 77 Miniscript: 26 ZkVM: 33 instructions

CRYPTOGRAPHY STACK

Vectorized elliptic curve operations.Curve25519-Dalek

Ristretto255

Vectorized elliptic curve operations.

Safe prime order group.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.

Cloak Network rules.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.

Cloak Constraints Network rules + custom rules.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.

Cloak Constraints

Instructions

Network rules + custom rules.

Arithmetic + boolean operations.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.

Cloak Constraints

Instructions

Your protocol

Network rules + custom rules.

Arithmetic + boolean operations.

Vaults, payment channels, order books, ...

CRYPTOGRAPHY STACK

Curve25519-Dalek

Ristretto255

Bulletproofs

Vectorized elliptic curve operations.

Safe prime order group.

Versatile zero-knowledge proof system.
pure Rust

Cloak Constraints

Instructions

Your protocol

Network rules + custom rules.

Arithmetic + boolean operations.

CRYPTOGRAPHY STACK

Curve25519-Dalek

Vaults, payment channels, order books, ...

CONSTRAINTS

(P = B + R·T) OR (X = Y)

Ad-hoc composition of arithmetic and boolean expressions:

R T mul B add P eq X Y eq or verify

CONSTRAINTS

Constraints

neg 
add 
mul 
eq 
range:n 
and 
or

not 
verify 

EX: CUSTOM CONSTRAINTS

Create variables from commitments, make expressions,

form constraints and add them to the constraint system.

Variables

const 
var 
alloc 
mintime 
maxtime 
unblind

Values

issue 
borrow 
retire 
cloak:m:n 

Contracts

input 
output:k 
contract:k 
log 
call

signtx 
signid 
signtag

Stack

push:n:x

program:n:x 
drop 
dup:k 
roll:k 

Values

issue 
borrow 
retire 
cloak:m:n 

Contracts

input 
output:k 
contract:k 
log 
call

signtx 
signid 
signtag

Constraints

neg 
add 
mul 
eq 
range:n 
and 
or

not 
verify

EX: CUSTOM CONSTRAINTS

A variable defines a payment constraint with borrow + output.  
Negative value is mixed with an actual payment in the cloak.

+V

–V

Variables

const 
var 
alloc 
mintime 
maxtime 
unblind

Stack

push:n:x

program:n:x 
drop 
dup:k 
roll:k 

LINEAR TYPES + CAPABILITIES

In ZkVM contracts imperatively express their requirements, 
entirely avoiding bugs like confused deputy problem.

ZkVM TRADEOFFS

NOT TURING-COMPLETE

ZkVM optimized for financial uses, not arbitrary computations:

• issuing tokens and fundraising,

• multi-party vaults,

• derivative instruments,

• payment channels.

O(n) BLOCKCHAIN

• Only zkSNARKs allow efficient compression (e.g. Coda).

• SPV clients use ≈50x less traffic than full blocks.

• Bootstrap from trusted source via Utreexo roots.

PRIVACY FEATURES
Private

Asset types

Asset quantities

Data parameters

In-transaction flow

Not private

Programs

Transaction graph

PRIVACY FEATURES
Private

Asset types

Asset quantities

Data parameters

In-transaction flow

Not private

Programs

Transaction graph

Taproot reveals only in
dispute and only a
specific branch.

PRIVACY FEATURES
Private

Asset types

Asset quantities

Data parameters

In-transaction flow

Not private

Programs

Transaction graph

CoinJoin scales better.
Hiding UTXO links requires  
O(n) storage (nullifiers).

Taproot reveals only in
dispute and only a
specific branch.

PERFORMANCE

PERFORMANCE
Fast1 <1 ms per output (up to 1000 tx/sec).

• vectorized implementation of Curve25519,
• signature aggregation,
• state of the art multi-scalar multiplication,
• ≈1.5 Kb/proof, marginal cost 0.2–0.5 Kb/transfer.

PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

• rangeproofs for output values bear most of the cost,
• signatures and custom constraints: 1-5% overhead.

<1 ms per output (up to 1000 tx/sec).

PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

Scales with privacy3 Aggregation saves space and time.

• proof size is log(N), marginal cost goes to zero,
• larger batches of ECC operations take N/log(N) time.

<1 ms per output (up to 1000 tx/sec).

PERFORMANCE
Fast1

Always fast2 Custom constraints are relatively cheap.

Scales with privacy3 Aggregation saves space and time.

Free storage4 Utreexo makes storage costs negligible.

• storage costs log(N) (≈1 kilobyte without caching),
• bandwidth overhead is 5-10% with caching  

(+ tens of megabytes)

<1 ms per output (up to 1000 tx/sec).

SMALL AND SAFE
Small, pure-Rust codebase:

 6K LOC zkvm + utreexo + blockchain (w/o consensus)

 7K LOC schnorr + musig + keytree + bulletproofs

 14K LOC curve25519 + ristretto255

Assumptions:

 ECDLP on Curve25519

 Keccak (SHAKE128) is a random oracle

LEARN MORE & PARTICIPATE

Code and specs:

github.com/stellar/slingshot

See also:

github.com/dalek-cryptography/bulletproofs

ristretto.group

merlin.cool

https://github.com/dalek-cryptography/bulletproofs
https://ristretto.group
https://merlin.cool

THANK YOU

Oleg Andreev
@oleganza

ZkVM

bulletproofs

Project Slingshot is sponsored by Stellar Development Foundation.

