
SECURE THE BAG
Jeremy Rubin

Why are we
here?

What is
Scaling?

Increasing
Transaction
Throughput

Scaling = Tradeoffs
- Decentralization
- Redundancy
- Privacy
- Censorship Resistance
- Layerization Complexity
- Latency
- Cost
- Peak/Trough Provisioning
- Reliability
- Interactivity

- Bandwidth Requirements
- Storage Requirements
- Fairness
- "Scanability"
- Homogeneity of use
- Collateralization
- Smart Contract Complexity
- Quantum Resistance
- Reorg Safety
- Orphan Rates
- Etc...

Acceptable tradeoffs?

PRO
Conceptually Simple

Block Size Increases

CON
Reliability/DoS

Centralization

Hard-Fork

Storage Requirements

Bandwidth

Orphan Rate Increase

PRO
Low Latency

Privacy

Low On-Chain Usage

Lightning Network

CON
Contract Complexity

No Settlement Finality

Collateralization

Interactivity

Intermediation/Middle Men

No Reorg Safety

PRO
Conceptually simple

Low Latency

Privacy

Immediate Settlement Finality

No over-collateralization

Low contract complexity

Non Interactive

מַה זֶּה ???

CON
N.A.Real time Bandwidth reduction

Soft Fork

Reorg Safety

etc...

Intuition Building

Intuition Building:
Committed UTXOs / "Certified Cheques"

A
1

B
1

C
1

Z
1

A
?

~A
?

Normal Committed

3

4

5

2 2

#

Intuition Building: Batched Payments

4

5

A
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

Batch Payment

4A
1

Payment

5B2

Intuition Building: Two Phase Payments

4

5

A
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

4

5

B
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

A ?

Pay Phase 1:
Spend(3); Create(12);

Spend Phase 1:
Spend(3); Create(1);

Receive Phase 2:
Spend(1); Create(12);

Batch Payment 2-Phase Payment

?

Intuition Building: Multi Phase Payments

4

5

B
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

A ?

Spend Phase 1:
Spend(3); Create(1);

Receive Phase 2:
Spend(1); Create(12);

2-Phase Payment

4

5

B
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

A ?

Spend Phase 1:
Spend(3); Create(1);

Receive Phase 2:
Spend(1); Create(6);

Chained Payment

C

Receive Phase 3:
Spend(1); Create(7);

?

Intuition Building: Tree Payments

4

5

B

1

2

3

6

7

8
9

1
0

1
1

1
2

A

?

Tree Payment

C

D

1
3

1
4

1
5

?

?

4

5

B
1

2

3

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

A ?

Chained Payment

C

?

Intuition Building: Receiving Tree Payments

1

2

3

A

Receiving Tree Payment

5
D

4

?
?

B
?

?

1

2

3

A

?

Spending Tree Payment

?
C

?

1
1

G
1
0

9
F

8

7
E

5
D

4

?
B

?

6

7
E

6

What's the magic? ?

Four Options
- 👎"Covenants" (OP_COV)👎
- 👎Pubkey Recovery (CHECK.SIGFROM.STACK, ANY.PREVOUT/NO.INPUT)👎
- 👎Presigned Transactions👎

- 🆕👍OP_SECURE.THE.BAG 👍🆕

Alternatives? 👎👎👎

- OP_COV
- Too Powerful → Too Much Technical Risk
- Covenant "viruses"
- Complex implementation rules
- Specific outputs

- Presigned Tx Multisig
- Interactivity OR Trusted Third Party
- Fancy ECDSA OR Schnorr protocols (fairness impossibility problems)
- Can't prove receiving guarantee to third party
- Key Deletion "Toxic waste"

- Pubkey Recovery (CHECKSIGFROMSTACK, ANYPREVOUT/NOINPUT)
- Possible recursion with OP_ECTWEAK
- Abstraction violation "Keys should be Keys, Signatures, Signatures"
- Incompatible with message digest including pubkey; related key attacks

OP_SECURETHEBAG
- Multibyte OpCode: `OP_SECURETHEBAG 0x20 <arg>`
- STB(tx) = H(tag || ver || locktime || H(outs) || H(seqs) || # inps || scriptSigs)
- STB(tx) commits info which mutates TXID except input COutpoints
- OP_STB verifies STB(tx) matches what can be computed from tx
- Multibyte Op structure ensures the desired TX is known at spend time

- Disallows all recursive covenants
- Future safe w.r.t. Above: There is no set of pure extensions* to script E such that enabling E and OP_SECURETHEBAG

as proposed enables recursive covenants, but E alone does not enable recursive covenants?

- Multiple inputs allowed
- Generally not safe to use #inps > 1! -- "half spend problem"

- Deployment: inside of Tapscript or standalone

Implementation Progress
- Draft BIP
- Proof of Concept Code for Opcode Available
- Experimental core wallet support in progress
- Minor BIP options in flux (pushless multibyte opcode v.s. taint tracking v.s. …)
- Deployment Strategy T.B.D.

Impact

⚠WARNING⚠
Simulated Results

May Not Match Reality
⚠WARNING⚠
This message brought to you by respect for the scientific process;

results reproducible from https://github.com/JeremyRubin/bips/blob/op-secure-the-bag/bip-secure-the-bag/simulation.py

https://github.com/JeremyRubin/bips/blob/op-secure-the-bag/bip-secure-the-bag/simulation.py

��

More Time; Less Adoption

10 x

More Time; Less Adoption

10 x

Summary: OP_STB is a Txn Bypass Capacitor
- Smooths out the Backlog
- Soaks up excess txs, releases them later
- Private benefit large even with small adoption
- Private use benefits entire public (mempool decongestion)
- Healthier backlog of low-priority transactions
- Reorg Safety:

? 2

13

14

What's the catch?

Option B

Block N+1

Block N+100

Confirmed in Block N
Spendable Block N+2

Confirmed in Block N
Spendable Block N+100

Option A

Confirmed in Block N
Spendable Block N+1

Block N+1 A Block N+1 B

Block N

Block N+2

Option B

Block N+1

Block N+100

Confirmed in Block N
Spendable Block N+2

Confirmed in Block N
Spendable Block N+100

Block N+1

Block N

Block N+2

First: Multi-Radix Congestion Controlled Transactions

IF STB A
ELSE STB B

Given:

- O(1) overhead amortized per input & O(n) overall, where w/o STB cost is O(n) also
- Multi-radix setups (OP_IF, OP_MBV, or Taproot) (Huffman Encoded)

- Simple radix-2 and radix-N expansion IF P(radix-2 used) = O(1/n) is E[O(c)] overhead
- Ability to defer and wait for 'asymptotically cheaper' blockspace (fees discounted O(1/n))
- Smaller Size/verification of interior node txns compared to normal txns (no signatures)
- Prunability of interior nodes (recomputable from leafs)
- Optimal Tree Structure (leafs at different depths)
- Subtree application of the above principles

The overhead of OP_STB is E[O(c)], where the actual overhead c is a small constant.

Probably True Claim; Fancy Way of Saying No-Cons

Quickfire:
Advanced Topics in
Secure The Bag

Inter Business Traffic
OP_STB withdraw from Exchange A can be immediately credited to Exchange B

Funds are effectively in "cold storage"

Businesses can manage their liquidity

Let users receive goods/trade once confirmed.

Ball Lightning

A : B B : CC : D D : EB : E A : D

BIG OP_STB TREE

A

B

E

D

C

N participants; O(N log N) channels
Setup: O(1)
Closing 1 Channel: O(log(N log N)) = O(log(N) + log log N) = O(log(N))
Closing all of a User's Channels: O(N log N / N) = O(log N)
Closing Channels Amortized Per Channel: O(N log N / N log N) = O(1)

N participants; O(N^2) channels
Setup: O(1)
Closing 1 Channel: O(log(N^2)) = O(log(N))
Closing all of a User's Channels: O(N^2 / N) = O(N)
Closing Channels Amortized Per Channel: O(N^2 / N^2) = O(1)

Smart Contracts

OP_STB unroll looped programs into finite steps

TXN 0
1 Input
Create UTXO 1

while (true):

 if (sign key A):

 wait(100 blocks)

 else if (sign key B & C):

 return ALLOW_SPEND

for int i = 0; i < RUN_LIMIT; ++:i

 if (sign key A):

 wait(100 blocks)

 else if (sign key B & C):

 return ALLOW_SPEND

wait(sign key B & C)

Control UTXO 0:
or(and(sign(A), STB(TX 0)),
 and(sign(B), sign(C)))

Arbitrary
TXN B+C
Authorized

TXN 1
1 Input
Create UTXO 2

Control UTXO 1:
and(wait(100 blocks),
 or(and(sign(A), STB(TX 1)),
 and(sign(B), sign(C)))

Arbitrary
TXN B+C
Authorized

Pick large RUN_LIMIT
Pick acceptable default action

Original Program Intent

Smart Vaults: Using Control Programs

TXN A:
+1 Hour
2 Inputs
Create UTXO 1

TXN B:
+ 1 Hour
2 Inputs
Create UTXO 2

TXN C:
+1 Hour
2 Inputs
Create UTXO 3

Control UTXO 0: STB(TXN A)

Cold UTXO C0

Cold UTXO C1

Cold UTXO C2

Control UTXO 1: STB(TXN B)

Hot UTXO H0
+1 Hour Arbitrary OR

STB(F)

Hot UTXO H1

Hot UTXO H2

Control UTXO 2: STB(TXN C)

sighash none
TXN W:
+1 Hour
Spend Arbitrary

TXN F:
Create UTXO D0Deep Cold UTXO D0

Non Interactive Channels (works w/ Ball Lightning)
TXN A:

Create UTXO
1

Uncooperative Close Initiated UTXO:
2 of 2 Cooperative or STB(TXN C)

TXN B:
Create UTXO

2

TXN C:
+2 Weeks

Create
UTXO 3

Main Channel UTXO:
2 of 2 Cooperative or STB(TXN B)

Arbitrary UTXO

UTXO 3:
Close State 0

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)
UTXO i+1:

Close State i+1

TXN Coop[i+1]:
Create UTXO i+1

(Half Signed)

UTXO i+1:
Close State i+1

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

TXN Uncoop[i+1]:
Create UTXO i+1

(Half Signed)

Coordination Free Decentralized Mining Pool Payouts

Summary:
OP_STB "סבבה"

Deployment

Do we need
this feature? Yes

How Urgently?
Later

Fees are low right now.

Other exciting changes on the way.

Limited engineering resources.

NOW

Why wait for the sickness?

Changes are slow, better to push when not
suffering.

Exchanges spend millions per year on BTC
fees; invest more eng time in reducing fee
burden.

Healthy backlog of low priority important as
halving approaches.

Options
Tapscript Extension

Pro

Merkle Branch Lookups

Easier to change opcode semantics

Con

Delay

Can't use with legacy scripts

Standalone OP NOP Upgrade

Pro

Available broadly

Don't need to wait for Taproot

Con

Can't use Tapscript OP_SUCCESS

Less "forced" Taproot privacy benefit

Messier OpCode semantics

FIN

How to Get Involved:
Review the BIP.

Sponsor me: I'm a starving independent researcher.

Work on the implementation.

Work on integrating OP_STB in your products.

Chime in on the mailing lists.

Follow @JeremyRubin / Tweet your support!

Work partially supported

