Threshold Scriptless
Scripts

Omer Shlomovits

Scriptless Scripts

"Magicking digital signatures so that they can only be created by faithful
execution of a smart contract”.

Andrew Poelsa

Scriptless Scripts

Andrew Poelstra

grindelwald@upsoftware.net

May 10, 2017

<Z

In This Talk...

* Intro to Schnorr Scriptless Scripts (SSS)

* The road to ECDSA Scriptless Scripts (ESS)
* Rebuttal ECDSA known security issues

* Discussing 2P-ECDSA as main tool
* Expending the Tool Box with Threshold ECDSA

e Experimenting with ESS

Schnorr Signature

EC public parameters : q,G

* Choose random k
* Compute R=k+ G

* Compute s=k + H(R, P, m) - x mod g
where x is the private key, R=x+ G

* Output (R,s)

The Shtik

* Adaptor Signature: Main building block is a tweak to Schnorr signature (R,s)

S =5 +1

* Sch'rr Sig * dptor (t, T)

y4 S htl k o B} (viddish) a devious trick; O ElementsProject/scriptless-scripts .

https://github.com/ElementsProject/scriptless-scripts

SS omic Swap

PKa + PKg PKa + PKe

Z

SS omic Swap

Wallet A Wallet B

PKa + PKg T &'s &' PKa + PKg

Z

SS omic Swap

Wallet B

PKa + PKg o PKa + PKpg

Z

SS mic Swap

PKa + PKg

Publish sa

Z

SS omic Swap

<Z Sa-S'a-t

10

criptless Scripts

Conclusion

Open Problems

m Preserving scriptless scripts in multisig

= ECDSA support I

m Locktimes and other extrospection

m Formalizing/understanding limits of scriptless scripts

O ElementsProject/scriptless-scripts »

https://github.com/ElementsProject/scriptless-scripts

ECDSA SS - The Hard
Questions

e Why we needed Schnorr in the first place?
e What are the challenges in using ECDSA for SS

https://github.com/ElementsProject/scriptless-scripts

Why Schnorr ?

EC public parameters : q,G

ECDSA

* Choose random k
*Compute R=k+ G
- Compute r = rymod q where R = (ry,1y)

* Compute s = k1« (H(m)+ r * x) mod g
where x Is the private key

* Qutput (r,s)

Schnorr

* Choose random k
* Compute R=k + G

* Compute s =k + H(R, P, m) - x mod g
where x is the private key, R =x + G

* Qutput (R,s)

13

Why Schnorr #2

ECDSA:! EC-Schnorr:
- No security proof - Provably secure under ROMDL

. Malleable - Provably non-malleable
. Not linear + Linearity’

CIW19 Keynote

Why Schnorr #2

ECDSA: EC-Schnorr:
- No security proof - Provably secure under ROMDL
. Malleable - Provably non-malleable

. Not linear + Linearity!

CIW19 Keynote

. ECDSAis a NO-GO?

15

ECDSA:
proof%A' NO security

ECDSA: No security
proof?

The Security of DSA and ECDSA

Bypassing the Standard Elliptic Curve Certification
Scheme

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
Serge.Vaudenay@epfl.ch

e 2003, Generic Group Model

17

ECDSA: No security
proof?

On the Provable Security of (EC)DSA Signatures

Manuel Fersch ~ Eike Kiltz Bertram Poettering
manuel.fersch@rub.de eike.kiltz@rub.de bertram.poettering@rub.de

Horst Gortz Institute for IT Security
Ruhr University Bochum, Germany

e 2016, Bijective Random Oracle (BRO) model

18

ECDSA: No security

proof?

ECDSA is one of the widely
used signature schemes: TLS,
PGP, S/MIME, multiple
cryptocurrencies etc..

ECDSA is widely standardized:
IEEE P1363, ANSI X9.62, FIPS
186-4

It was subject to massive
cryptanalytic efforts with zero
known attacks

Implementations |edit]

Below is a list of cryptographic libraries that provide support for ECDSA:

e Botan

e Bouncy Castle
e cryptlib

e Crypto++

e libgcrypt

e OpenSSL

e wolfCrypt

e mbed TLS

19

ECDSA: Malleable ?

e Known malleability:

e (r,s) and (r, g - s) are both valid signatures on message m

20

ECDSA: Malleable ?

e Known malleability:

e (r,s) and (r, g - s) are both valid signatures on message m

e Define ECDSA’ as ECDSA that fix this malleability
e ECDSA'’is strong unforgeable

21

]

,‘,
77\

'N

ECDSA: Malleable ?

e Known malleability:

e (r,s) and (r, g - s) are both valid signatures on message m

e Define ECDSA’ as ECDSA that fix this malleability
e ECDSA'’is strong unforgeable

e BIP62 (WIP):

Low S values in signatures

The value S in signatures must be between 0x1 and Ox7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 5D576E73 57A4501D
DFE92F46 681B20A0 (inclusive). If S is too high, simply replace it by S' = OxFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
BAAEDCEG AF48A03B BFD25E8C D0364141 - S.

22

|

¢

-
4
W\

x4

ECDSA: Malleable ?

e Known malleability:

e (r,s) and (r, g - s) are both valid signatures on message m

e Define ECDSA’ as ECDSA that fix this malleability
e ECDSA'’is strong unforgeable

e BIP62 (WIP):

Low S values in signatures

The value S in signatures must be between 0x1 and Ox7FFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 5D576E73 57A4501D
DFE92F46 681B20A0 (inclusive). If S is too high, simply replace it by S' = OxFFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
BAAEDCEG AF48A03B BFD25E8C D0364141 - S.

e Segwit

23

Schnorr: Malleable ?

[CRYPTOGRAPHY

|
Q " Home EC Schnorr signature: multiple standard?
Questions ‘ Asked 3 years, 3 months ago Active 4 months ago Viewed 2k times
. scheme public first second sign.
A . key component component size
[ScIo1] -dxXG HQ,M) k+dh b+ 2b
EC-SDSA —-dXG HQO.|Qy|M) k+dh 2b + 2b
EC-SDSA-opt | -d X G H(Q, || M) k+dh 2b + 2b
EC-FSDSA -dXG Q| Oy k+d HQOx || Qy || M) 4b+2b
EC-Schnorr dxG HM | QO,) k—dh 2b + 2b
libsecp256k1 dxXG Q k—d HQ, || M) 2b + 2b

Linearity

e Valid point!

e Deal breaker?

25

Linearity

e Valid point!

e Deal breaker?

e @Given the non-linearity of ECDSA, Are ECDSA Scriptless Scripts
* Possible ?
e Possible but Inefficient ?

* Possible but with compromise on Security ?

20

<Z

Linearity: Observation

e Threshold ECDSA has struggled with the same problem.
e Not surprisingly

e EXxisting works for ECDSA-SS are based on threshold ECDSA
protocol

27

Scaling Bitcoin 2018 #1

Instantiating Scriptless 2P-ECDSA

Fungible 2-of-2 Multisigs for Today'’s Bitcoin

Conner Fromknecht

Head of Cryptographic Engineering, Lightning Labs

28

Scaling Bitcoin 2018 #2

Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability

Giulio Malavolta*§, Pedro Moreno-Sanchez* Y7, Clara Schneidewindf, Aniket Katet, Matteo Maffeif
§Friedrich—Alexander—University Erlangen-Niirnberg, fTU Wien, ¥ Purdue University

29

Scaling Bitcoin 2018 #2

Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability

Giulio Malavolta*$, Pedro Moreno-Sanchez* 97, Clara Schneidewind', Aniket Kate, Matteo Maffei'
§Friedrich-Alexander—University Erlangen-Niirnberg, fTU Wien, ¥ Purdue University

Scriptless Scripts (SS-Schnorr)

» Technique originally proposed by A. Poelstra

» “Encode” payment condition within the Schnorr
signatures

» Unfortunately, Schnorr is not used yet in many
_cryptocurrencies

» In our work: 1‘
o formal description and security analysis {’
!

— e = = _—— = —
== = e —

-

e scriptless scripts based on ECDSA

= = — = o= == e — e — ==

M1

30

Previous Work

e Common to bothis

Fast Secure Two-Party ECDSA Signing*

Yehuda Lindell*™*

Dept. of Computer Science
Bar-Ilan University, ISRAEL
lindell@biu.ac.il

31

Threshold Signatures

(t,n)-threshold signature scheme distributes signing power to n parties
1 such that any group of at least t parties can generate a signature

(2,3) - Keygen

32

Threshold Signatures

(t,n)-threshold signature scheme distributes signing power to n parties
1 such that any group of at least t parties can generate a signature

(2,3) - Signing
B

33

2P-Keygen [L17]

Q=x1°*Q Q =x2° Q1

The protocol promises: (1) Privacy, (2) Correctness

Z O KZen-networks/multi-party-ecdsa 24

https://github.com/KZen-networks/multi-party-ecdsa

2P-Signing [L17]

Signing message m: m’ = Hash(m)

s = Decd(s”)/k1 Ence(m’/ ko) H

Ence(X1) OENCe(X2 °r / ko)

Output: o= (s, r), s.t. Verify(c, Q, m’) =1

i The protocol promises: Unforgeability O KZen-networks/multi-party-ecdsa .

https://github.com/KZen-networks/multi-party-ecdsa

2P-E CDSA Lock
IMMSKM18]}

message m’ = Hash(m), Adaptor (i, T)

S* =
Ence(m’/ ko) B

Ence(x1)OENce(X2 °r / ko)

s’ = Decq(s”)/k1

Output: ¢’ = (s’ = s°t, r), s.t. Verify(s’st-7, r, Q, m’) = 1

Z O KZen-networks/multi-hop-locks 6

https://github.com/KZen-networks/multi-hop-locks

<Z

Possible Issues

* @Given the non-linearity of ECDSA, Are ECDSA Scriptless Scripts
e Possible ? YES, using Lindell 2P-ECDSA
e Possible but Inefficient ? MAYBE

* Possible but with compromise on Security ? YES

37

Possible Issues #2

Digital signing by utilizing multiple distinct signing keys, distributed between two parties

Abstract
US20180359097AT1

Described herein is a method and system for digital signing by utilizing Elliptic Curve Digital United States
Signature Algorithm (ECDSA) with a group generator of an elliptic-curve group of order and an
elliptic curve point Q. The method may be configured to receive a digital message and associated
with a request from a third-party in order to sign the digital message. The system designed to sign
such messages may comprise two parties denoted P1 and P2 configured to conduct a multiparty
signing procedure by utilizing ECDSA. The digital signing procedure may follow preliminary steps Inventor: Yehuda LINDELL
configured to set the system with the necessary conditions for the multiparty signing procedure.
Such preliminary steps may set the parties P1, and P2, in accordance with the configuration defined
herein.

B Download PDF a Find Prior Art

Current Assignee : Bar llan University

Q 38

Bad News?

Threshold ECDSA
Papers Circa 2017-Today

. Signing - .

Params Assumptions Rounds Signing Time
L17] 2/2 ECDSA, Paillier 4 milliseconds
GG18] t/n ECDSA, Strong RSA 9 milliseconds
LNR18] t/n ECDSA, DDH 8 milliseconds
DKLS18] 2/n ECDSA 2 milliseconds
DKLS19] t/n ECDSA Log(t) + 6 :milliseconds
CCLST19] 2/2 |ECDSA, Classgroups | 4 i millissconds
SA19] nm ECDSA &+ T
DKOSS19] i t/n (ECDSA 1 :sub millisecond

40

Threshold ECDSA
Papers Circa 2017-Today

. Signing - .

Params Assumptions Rounds Signing Time
L17] 2/2 {ECDSA, Paillier 4 ‘milliseconds
GG18] t/n ECDSA, Strong RSA 9 milliseconds
LNR18] t/n ECDSA, DDH 8 milliseconds
DKLS18] 2/n ECDSA 2 milliseconds
DKLS19] t/n ECDSA Log(t) + 6 :milliseconds
CCLST19] | 2/2 |ECDSA, Classgroups | | millsssenes
SAT9] nn ECDSA LN
DKOSS19] | t/n (ECDSA 1 'sub millisecond

41

Z

Experiments

42

Use Case #1: Scriptless
Script MultiSig

* Access policy privacy
» (Cost: one standard transaction

 Max number of parties

Z O KZen-networks/multi-party-ecdsa
43

https://github.com/KZen-networks/multi-party-ecdsa

Use Case #2: Threshold
Wallet

» Distributed key generation (DKG)

» Distributed Signing

» Secret Share Recovery

* Deterministic Child Address Derivation

* Rotation

KZen-networks/gotham-city

Z 0 unbound-tech/blockchain-crypto-mpc

44

https://github.com/KZen-networks/gotham-city
https://github.com/unbound-tech/blockchain-crypto-mpc

Use Case #3: Coin Join
Mixer

* Pubkey is equal to a sum of locally generated public keys:
* Pk = Pk1 + Pko + ... + Pkn

* Basically a constructed way for parties to reach off-chain
consensus on output addresses like Chaumian coin-join

* No need for central coordinator

Z O KZen-networks/SharelLock

45

https://github.com/KZen-networks/ShareLock

Use Case #4: Atomic Swaps

 Option 1: Use the scriptless script construction

» Locking using Adaptor signatures.

* Option 2: Depends on access structure secret shares can be
swapped using “gradual release of secrets”

scriptless-scripts/atomic-swap

Z O KZen-networks/centipede/ 46

https://github.com/KZen-networks/centipede/blob/master/src/juggling/proof_system.rs#L220
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md

KZ

WalletA Wallet B

WalletA Wallet B

47

KZ

WalletA Wallet B

WalletA Wallet B

48

KZ

WalletA Wallet B

WalletA Wallet B

49

50

KZ

WalletA Wallet B

WalletA Wallet B

51

Use Case #6: Payment
Channel Network

Anonymous Multi-Hop Locks for Blockchain
Scalability and Interoperability

Giulio Malavolta*§, Pedro Moreno-Sanchez*"”, Clara Schneidewind’, Aniket Kate*, Matteo Maffeif
§Friedrich-Alexander—University Erlangen-Niirnberg, TTU Wien, ¥ Purdue University

SetupUO(Ul,...,Un) N\ 5\ 5\ N\
LOCkUO,Ul LOCkU],UZ n=2,Un— 1
... —>
20)
Up | L | s | K Up | st | s | % oo s | L
L J J

v | v

kg <« Release €—— k| <t <L k,., <«———— Release «<— k,_| <« Release €<— k,

Z Q KZen-networks/multi-hop-locks/ 52

https://github.com/KZen-networks/multi-hop-locks

Use Case #7: Zero Knowledge
Contingent Payments

Efficient Zero-Knowledge Contingent Payments in
Cryptocurrencies Without Scripts

Wactaw Banasik, Stefan Dziembowski, and Daniel Malinowski

University of Warsaw

0 SellWitness/ZKFactorization 53

https://github.com/SellWitness/ZKFactorization

ZKCP

Prover / Seller Verifier / Buyer
Run threshold KeyGen o

Knows x

' Generate TX., TXz: |
TX1,in: Buyer ’
" TXi,0ut : threshold-Sig
TXz,in : TXq “
TX2,0ut : Seller

ZK Prove x is encrypted by o

—— = = e e

z —— .

|

!

Broadcast TX>

V4

| Extract x "

R&D

Still long way to go!

55

<Z

R&D

Still long way to go!

* Threshold cryptography - In standardisation process by NIST (*)

(*)https://csrc.nist.gov/Projects/Threshold-Cryptography

56

https://csrc.nist.gov/Projects/Threshold-Cryptography

R&D

Still long way to go!

* Threshold cryptography - In standardisation process by NIST (*)

* Network layer : authenticated secure p2p communication, Broadcast
channel

* |dea: use a blockchain/ consensus layer for the communication

O KZen-networks/white-city/ 57

https://github.com/KZen-networks/white-city

R&D

Still long way to go!

* Threshold cryptography - In standardisation process by NIST (*)

* Network layer : authenticated secure p2p communication, Broadcast
channel

* |dea: use a blockchain/ consensus layer for the communication

* Improvements: Accountability , Batch signing and verification

O KZen-networks/white-city/

58

https://github.com/KZen-networks/white-city

Summary

* Threshold ECDSA based Scriptless Scripts / systems
* Are possible now
* Are practical to use in real life

* Hold strong security guarantees and the focus of active research in
the cryptography community

59

Summary

* Threshold ECDSA based Scriptless Scripts / systems
* Are possible now
* Are practical to use in real life

* Hold strong security guarantees and the focus of active research in
the cryptography community

Q u e St i O n S ? Special thanks: Oded Leiba, Jonas Nick,

= Elichai Turkel, Pedro Moreno Sanchez

a»

Q https://t.me/kzen research

<7 ‘ ’ https://github.com/KZen-networks 50

ZenGo/research

https://t.me/kzen_research
https://github.com/KZen-networks
https://www.zengo.com/research

