
Omer Shlomovits

Threshold Scriptless
Scripts

�1

Scriptless Scripts

!2

"Magicking digital signatures so that they can only be created by faithful
execution of a smart contract”.

Andrew Poelstra

In This Talk…

!3

• Intro to Schnorr Scriptless Scripts (SSS)

• The road to ECDSA Scriptless Scripts (ESS)

• Rebuttal ECDSA known security issues

• Discussing 2P-ECDSA as main tool

• Expending the Tool Box with Threshold ECDSA

• Experimenting with ESS

Schnorr Signature

!4

• Choose random k
• Compute R = k • G

• Compute s = k + H(R, P, m) • x mod q
where x is the private key, R = x • G
• Output (R,s)

EC public parameters : q,G

The Shtik

!5

Adaptor Signature: Main building block is a tweak to Schnorr signature (R,s)

ElementsProject/scriptless-scripts

s’ = s + t

Schnorr Sig Adaptor (t, T)

https://github.com/ElementsProject/scriptless-scripts

!6

Wallet A Wallet B

PKA + PKBPKA + PKB

SS Atomic Swap

!7

Wallet A Wallet B

T, s’A, s’A PKA + PKBPKA + PKB

SS Atomic Swap

!8

Wallet A Wallet B

T, s’A, s’A

 sB

PKA + PKBPKA + PKB

SS Atomic Swap

!9

Wallet A Wallet B

T, s’A, s’A

 sB

PKA + PKBPKA + PKB

Publish sA

SS Atomic Swap

!10

Wallet A Wallet B

T, s’A, s’A

 sB

PKA + PKBPKA + PKB

Publish sA

t = s’A - sA

sA = s’A - t

SS Atomic Swap

Scriptless Scripts

!11ElementsProject/scriptless-scripts

Q1 = decom(Q1)

https://github.com/ElementsProject/scriptless-scripts

ECDSA SS - The Hard
Questions

!12

• Why we needed Schnorr in the first place?

• What are the challenges in using ECDSA for SS

https://github.com/ElementsProject/scriptless-scripts

Why Schnorr ?

!13

• Choose random k
• Compute R = k • G
• Compute r = rx mod q where R = (rx,ry)
• Compute s = k-1 • (H(m)+ r • x) mod q

where x is the private key
• Output (r,s)

• Choose random k
• Compute R = k • G

• Compute s = k + H(R, P, m) • x mod q
where x is the private key, R = x • G
• Output (R,s)

EC public parameters : q,G

ECDSA Schnorr

Why Schnorr #2

!14

Why Schnorr #2

!15
ECDSA is a NO-GO?

ECDSA: No security
proof?

!16

ECDSA: No security
proof?

• 2003, Generic Group Model

!17

ECDSA: No security
proof?

!18

• 2016, Bijective Random Oracle (BRO) model

ECDSA: No security
proof?

!19

• ECDSA is one of the widely
used signature schemes: TLS,
PGP, S/MIME, multiple
cryptocurrencies etc..

• ECDSA is widely standardized:
IEEE P1363, ANSI X9.62, FIPS
186-4

• It was subject to massive
cryptanalytic efforts with zero
known attacks

ECDSA: Malleable ?

!20

• Known malleability:

• (r,s) and (r, q - s) are both valid signatures on message m

ECDSA: Malleable ?

!21

• Define ECDSA’ as ECDSA that fix this malleability

• ECDSA’ is strong unforgeable

• Known malleability:

• (r,s) and (r, q - s) are both valid signatures on message m

ECDSA: Malleable ?

!22

• Define ECDSA’ as ECDSA that fix this malleability

• ECDSA’ is strong unforgeable

• Known malleability:

• (r,s) and (r, q - s) are both valid signatures on message m

• BIP62 (WIP):

ECDSA: Malleable ?

!23

• Define ECDSA’ as ECDSA that fix this malleability

• ECDSA’ is strong unforgeable

• Known malleability:

• (r,s) and (r, q - s) are both valid signatures on message m

• BIP62 (WIP):

• Segwit

Schnorr: Malleable ?

!24

Q:

A:

Linearity
• Valid point!

!25

• Deal breaker?

Linearity

!26

• Given the non-linearity of ECDSA, Are ECDSA Scriptless Scripts

• Possible ?

• Possible but Inefficient ?

• Possible but with compromise on Security ?

• Valid point!

• Deal breaker?

Linearity: Observation

!27

• Threshold ECDSA has struggled with the same problem.

• Not surprisingly

• Existing works for ECDSA-SS are based on threshold ECDSA
protocol

!28

Scaling Bitcoin 2018 #1

Scaling Bitcoin 2018 #2

!29

Scaling Bitcoin 2018 #2

!30

• Common to both is 2P-ECDSA:

!31

Previous Work

Threshold Signatures

!32

 (t,n)-threshold signature scheme distributes signing power to n parties
such that any group of at least t parties can generate a signature

(2,3) - Keygen

xc,Q

xi,Q

xs,Q

Threshold Signatures

!33

 (t,n)-threshold signature scheme distributes signing power to n parties
such that any group of at least t parties can generate a signature

(2,3) - Signing

xc,Q, tx

xi,Q, tx

xs,Q

2P-Keygen [L17]

!34

Party1

Q1 = x1 • G
Party2

Q1

Q2

Q2 = x2 • G

Ence(x1)

The protocol promises: (1) Privacy, (2) Correctness

KZen-networks/multi-party-ecdsa

Q = x1 • Q2 Q = x2 • Q1

https://github.com/KZen-networks/multi-party-ecdsa

2P-Signing [L17]

!35

Party1

R1 = k1 • G
Party2

R1

R2

R2 = k2 • G

s*=
Ence(m’ / k2) ⊞

Ence(x1)⊙Ence(x2 •r / k2)

R = k1 • R R = k2 • R1

Signing message m: m’ = Hash(m)

s*
s = Decd(s*)/k1

Output: 𝞂 = (s, r), s.t. Verify(𝞂, Q, m’) = 1

The protocol promises: Unforgeability KZen-networks/multi-party-ecdsa

https://github.com/KZen-networks/multi-party-ecdsa

2P-ECDSA Lock
[MMSKM18]

!36

Party1

R1 = k1 • T
Party2

R1

R2

R2 = k2 • T

s* =
Ence(m’ / k2) ⊞

Ence(x1)⊙Ence(x2 •r / k2)

R = k1 • R R = k2 • R1

message m’ = Hash(m), Adaptor (t, T)

s*
s’ = Decd(s*)/k1

Output: 𝞂’ = (s’ = s•t, r), s.t. Verify(s’•t-1, r, Q, m’) = 1

KZen-networks/multi-hop-locks

https://github.com/KZen-networks/multi-hop-locks

Possible Issues

!37

• Given the non-linearity of ECDSA, Are ECDSA Scriptless Scripts

• Possible ? YES, using Lindell 2P-ECDSA

• Possible but Inefficient ? MAYBE

• Possible but with compromise on Security ? YES

Possible Issues #2

!38

Bad News?

!39

Threshold ECDSA
Papers Circa 2017-Today

!40

Params Assumptions Signing
Rounds Signing Time

[L17] 2/2 ECDSA, Paillier 4 milliseconds

[GG18] t/n ECDSA, Strong RSA 9 milliseconds

[LNR18] t/n ECDSA, DDH 8 milliseconds

[DKLS18] 2/n ECDSA 2 milliseconds
[DKLS19] t/n ECDSA Log(t) + 6 milliseconds
[CCLST19] 2/2 ECDSA, Class groups 4 milliseconds
[SA19] n/n ECDSA 1
[DKOSS19] t/n ECDSA 1 sub millisecond

Threshold ECDSA
Papers Circa 2017-Today

!41

Params Assumptions Signing
Rounds Signing Time

[L17] 2/2 ECDSA, Paillier 4 milliseconds

[GG18] t/n ECDSA, Strong RSA 9 milliseconds

[LNR18] t/n ECDSA, DDH 8 milliseconds

[DKLS18] 2/n ECDSA 2 milliseconds
[DKLS19] t/n ECDSA Log(t) + 6 milliseconds
[CCLST19] 2/2 ECDSA, Class groups 4 milliseconds
[SA19] n/n ECDSA 1
[DKOSS19] t/n ECDSA 1 sub millisecond

Experiments

!42

Use Case #1: Scriptless
Script MultiSig

!43

• Access policy privacy

• Cost: one standard transaction

• Max number of parties

KZen-networks/multi-party-ecdsa

https://github.com/KZen-networks/multi-party-ecdsa

Use Case #2: Threshold
Wallet

!44

• Distributed key generation (DKG)
• Distributed Signing
• Secret Share Recovery
• Deterministic Child Address Derivation
• Rotation

KZen-networks/gotham-city

unbound-tech/blockchain-crypto-mpc

https://github.com/KZen-networks/gotham-city
https://github.com/unbound-tech/blockchain-crypto-mpc

Use Case #3: Coin Join
Mixer

!45

• Pubkey is equal to a sum of locally generated public keys:
• Pk = Pk1 + Pk2 + … + Pkn

• Basically a constructed way for parties to reach off-chain
consensus on output addresses like Chaumian coin-join

• No need for central coordinator

KZen-networks/ShareLock

https://github.com/KZen-networks/ShareLock

Use Case #4: Atomic Swaps

!46

• Option 1: Use the scriptless script construction
• Locking using Adaptor signatures.

• Option 2: Depends on access structure secret shares can be
swapped using “gradual release of secrets”

KZen-networks/centipede/

scriptless-scripts/atomic-swap

https://github.com/KZen-networks/centipede/blob/master/src/juggling/proof_system.rs#L220
https://github.com/ElementsProject/scriptless-scripts/blob/master/md/atomic-swap.md

!47

skB1 skB2 skL1 skL2

Wallet A Wallet AWallet B Wallet B

!48

skL1 skL2skB1 skB2

Wallet A Wallet AWallet B Wallet B

!49

skL1 skL2skB1 skB2

Wallet A Wallet AWallet B Wallet B

!50

skL1 skL2skB1 skB2

!51

skL1 skL2skB1 skB2

Wallet A Wallet AWallet B Wallet B

Use Case #6: Payment
Channel Network

!52KZen-networks/multi-hop-locks/

https://github.com/KZen-networks/multi-hop-locks

Use Case #7: Zero Knowledge
Contingent Payments

!53SellWitness/ZKFactorization

https://github.com/SellWitness/ZKFactorization

!54

ZKCP
Prover / Seller Verifier / Buyer

Run threshold KeyGen

Sign TX2

Generate TX1, TX2:

TX1,in : Buyer

TX1,out : threshold-Sig

TX2,in : TX1

TX2,out : Seller

ZK Prove x is encrypted by 𝞂

Broadcast TX1

Broadcast TX2

Extract x

𝞂

Knows x

R & D
Still long way to go!

!55

Still long way to go!

!56

• Threshold cryptography - In standardisation process by NIST (*)

(*)https://csrc.nist.gov/Projects/Threshold-Cryptography

R & D

https://csrc.nist.gov/Projects/Threshold-Cryptography

Still long way to go!

!57

• Network layer : authenticated secure p2p communication, Broadcast
channel

• Idea: use a blockchain/ consensus layer for the communication

• Threshold cryptography - In standardisation process by NIST (*)

KZen-networks/white-city/

R & D

https://github.com/KZen-networks/white-city

Still long way to go!

!58

• Network layer : authenticated secure p2p communication, Broadcast
channel

• Idea: use a blockchain/ consensus layer for the communication

• Threshold cryptography - In standardisation process by NIST (*)

KZen-networks/white-city/

• Improvements: Accountability , Batch signing and verification

R & D

https://github.com/KZen-networks/white-city

!59

• Threshold ECDSA based Scriptless Scripts / systems

• Are possible now

• Are practical to use in real life

• Hold strong security guarantees and the focus of active research in
the cryptography community

Summary

Summary

!60

https://t.me/kzen_research

https://github.com/KZen-networks

Special thanks:Questions?
 Elichai Turkel, Pedro Moreno Sanchez

• Threshold ECDSA based Scriptless Scripts / systems

• Are possible now

• Are practical to use in real life

• Hold strong security guarantees and the focus of active research in
the cryptography community

ZenGo/research

Oded Leiba, Jonas Nick,

https://t.me/kzen_research
https://github.com/KZen-networks
https://www.zengo.com/research

