
Non Custodial Sidechains for
Bitcoin utilizing Plasma Cash

and Covenants
(research in progress)

Georgios Konstantopoulos
Independent Consultant & Researcher
Twitter: @gakonst / me@gakonst.com

Slides available: gakonst.com/scalingbitcoin2019.pdf

https://twitter.com/@gakonst
mailto:me@gakonst.com
https://gakonst.com/scalingbitcoin2019.pdf

Related Work
Plasma: Autonomous Scalable Smart Contracts, Poon, Buterin

Plasma Ethresearch, too many contributors

NOCUST – A Securely Scalable Commit-Chain, Khalil, Gervais, Felley

CoinCovenants using SCIP signatures, an amusingly bad idea, Maxwell

Preventing Consensus Fraud with Commitments and Single-Use-Seals, Todd

Minimal Viable Merged Consensus, Adler

...

http://plasma.io/plasma.pdf
https://ethresear.ch/c/plasma
https://eprint.iacr.org/2018/642.pdf
https://bitcointalk.org/index.php?topic=278122.0
https://petertodd.org/2016/commitments-and-single-use-seals
https://ethresear.ch/t/minimal-viable-merged-consensus/5617

How do we scale?
1. Increase semantic density of transactions

(Segwit / MAST / Schnorr / Taproot / … / Layer 2)
2. Bigger blocks

Sidechains considered harmful
Lock BTC in escrow

Mint LBTC Burn LBTC

LBTC transfer

Unlock BTC

peg-in

pe
g-

ou
t

Sidechains considered harmful
Lock BTC in escrow

Mint LBTC Burn LBTC
transaction gets
censored!

LBTC transfer

peg-in No peg-out?!

Statechains considered harmful
Lock BTC in escrow

Mint SBTC Any previous holder of the
UTXO key can collude with
the entity and steal funds

peg-in

???
“Statechain

entity”

Plasma Cash Tradeoffs
1. Operator cannot steal
2. “Finalize” arbitrary number of txs

in one on-chain transaction
3. No overcollateralization

requirements
4. No need to sign to receive a

payment
5. Can receive funds without

on-chain transaction (no notion
of inbound liquidity)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs
1. Operator cannot steal
2. “Finalize” arbitrary number of txs

in one on-chain transaction
3. No overcollateralization

requirements
4. No need to sign to receive a

payment
5. Can receive funds without

on-chain transaction (no
notion of inbound liquidity)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs
1. Operator cannot steal
2. “Finalize” arbitrary number of txs

in one on-chain transaction
3. No overcollateralization

requirements
4. No need to sign to receive a

payment
5. Can receive funds without

on-chain transaction (no notion
of inbound liquidity)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/

1. Fixed denomination transfers
2. Safe only under liveness

assumption (O(1) stale state
fraud proof)

3. Requires high base chain quality
(so that disputes can reliably get
included)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

Plasma Cash Tradeoffs
1. Operator cannot steal
2. “Finalize” arbitrary number of txs

in one on-chain transaction
3. No overcollateralization

requirements
4. No need to sign to receive a

payment
5. Can receive funds without

on-chain transaction (no notion
of inbound liquidity)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/

1. Fixed denomination transfers
2. Safe only under liveness

assumption (O(1) stale state
fraud proof)

3. Requires high base chain
quality (so that disputes can
reliably get included)

https://docs.google.com/spreadsheets/d/1vHw3Rr7aFH1FXlyMjnhC0Wvro_lZ4S8hozpaWgMR1bc/edit?usp=sharing

“Operator” commits* each block root to “parent chain”

commit(0x...)Operator (similar to
Statechain Entity)

*uses accumulator that supports
non-membership proofs e.g. ordered merkle tree

Users prove coin history per transfer (off-chain)

Prove
exclusion

Prove
inclusion

Users prove coin history per transfer (off-chain)

...

...

Prove
exclusion

Prove
inclusion

Prove
exclusion

Prove
inclusion

Coin history grows linearly with number of blocks
TXO Commitments? RSA Accumulators?

Exit Game: Delayed Withdrawals

Spend to
fraud-proof script:

“exit”

Wait T Spend w/o
limitations
from exit
script after T

Deposit
script

Exit Game: Delayed Withdrawals

Spend to
fraud-proof script:

“exit”
CHALLENGE:
Spend back to
deposit script

Deposit
script

Transaction Format: 1 input 1 output UTXO

2 31 4

Alice Bob

(UTXO_ID, PARENT_BLOCK, NEW_OWNER, PREV_OWNER_SIG)

(0x123, 1, Bob, Alice_sig)

UTXO ID: 0x123

https://ethresear.ch/t/plasma-cash-was-a-transaction-format/4261

https://ethresear.ch/t/plasma-cash-was-a-transaction-format/4261

Merkle Tree: TxHash at each UTXO_ID index

leaf[i] = txs[i] ?
sha256(txs[i]) : sha256(0)

Current Block: 2

1

4

7

UID

Merkle Tree: TxHash at each UTXO_ID index

leaf[i] = txs[i] ?
sha256(txs[i]) : sha256(0)

Current Block: 2

1

4

7

UID

1

4

7

UID

leaf[i] = txs[i] ?
sha256(txs[i]) : sha256(0)

Current Block: 3

Merkle Tree: TxHash at each UTXO_ID index

Exit

2 31

Exit:
Parent Block, Block

“Exit Spent Coin”

2 31 4

Exit:
Parent Block, Block

Challenge:
Tx spent at

Block’ > Block

“Exit Double Spend”

2 31

Exit:
Parent Block, Block

Challenge:
Parent Tx spent at

Parent Block < Block’ < Block

“Invalid History Challenge”

2 31 4

Exit:
Parent Block, Block

Challenge:
Claim ownership at

Block’ < Parent Block

Response to Invalid History Challenge

2 31 4

Exit:
Parent Block, Block

Challenge:
Claim ownership at

Block’ < Parent Block
Response:

Reveal spend from 1 at
Block’ < Block’’ <= Parent Block

Background literature on covenants

What is a covenant?

Restriction on the outputs spending a UTXO.

Alice Bob ???

O’Connor @ Bitcoin Workshop 2017:
● Digital signatures: WHO can spend Bitcoin
● Timelocks: WHEN Bitcoin can be spent

What is a covenant?

Restriction on the outputs spending a UTXO.

Alice Bob EFF
+covenant

O’Connor @ Bitcoin Workshop 2017:
● Digital signatures: WHO can spend Bitcoin
● Timelocks: WHEN Bitcoin can be spent
● Covenants: HOW and WHERE Bitcoin can be spent

Use Cases
● Vaults
● Paralysis Proofs
● Colored Coins (non-fungible tokens)
● Congestion Control
● Fraud proofs → Sidechains with trust-minimized

reverse peg
● ...more in the mailing list

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-November/013271.html

Covenant Designs

● OP_CHECKOUTPUT (MES’16)
● OP_CAT + OP_CHECKSIGFROMSTACK (O’Connor,

Piekarska ‘17)
● OP_CHECKOUTPUTSHASHVERIFY /

OP_SECURETHEBAG (Rubin ‘19)
● OP_PUSHTXDATA (Lau ‘17)
● Presigned Transactions (..? mailing list spec)

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017229.html

Implementing
Plasma Cash on Bitcoin

UTXO State Machine

Merkle Proof Verification
VerifyIncluded(UTXO_ID, ROOT, TX_HASH, PROOF):

ROOT
TX_HASH
PROOF
UTXO_ID
MERKLEBRANCHVERIFY

Verify block root was signed by Operator
VerifySignedByOperator(BLOCK_NUM, ROOT, SIG):

BLOCK_NUM
ROOT
CAT
SIG
<OPERATOR_ADDRESS>
CHECKSIGFROMSTACKVERIFY

Verify transaction was signed by previous owner
VerifyTxSigned(TX)

UTXO_ID
PARENT_BLOCK_NUM
NEW_OWNER
CAT CAT SHA256
SIG
<PREV_OWNER_PUBKEY>
CHECKSIGFROMSTACKVERIFY

Enforce UTXO is spent to next state
EnforceSpentTo(ARGS, NEXT_STATE_PATTERN):

ARGS
NEXT_STATE_PATTERN
CHECKOUTPUTVERIFY

(use PICK to dynamically construct the covenant with scriptSig args)

Deposit = Spend to covenant

Spend to EnforceSpentTo(EXIT)

Exit = Spend from Deposit to Exit Script

Spend to
EXIT(parentIncludedTx, includedTx)

Challenge Spent Coin / Double Spend = Spend back to
Deposit

Spend to DEPOSIT, show includedTx
according to exit game

Challenge Invalid History = Increment Counter,
Response = Decrement Counter

Spend to EXIT’, show includedTx according
to exit game. New EXIT state = previous state with
1 extra IF condition for the Response.

Withdraw = Spend anywhere after T if counter = 0

 CSV 1000 BENEFICIARY_ADDRESS CHECKSIG

Finalize Challenge = Spend to Deposit after T if
counter > 0

Summary

● Off-chain fixed-denomination payments

● Safe under liveness assumption

● “Compression” mechanism (more txs settle per block)

● No on-chain transaction to join

● Can receive payments when keys are cold

● Capital efficient

● Implementation WIP (done on Ethereum since last year)

Complex & secure scripts are hard

Thank you for your attention
Q & A ?

@gakonst / me@gakonst.com
gakonst.com/scalingbitcoin2019.pdf

gakonst.com/plasmacash.pdf

https://twitter.com/@gakonst
mailto:me@gakonst.com
https://gakonst.com/scalingbitcoin2019.pdf
https://gakonst.com/plasmacash.pdf

Appendix

More general State Transitions?
Data unavailability breaks safety…

NOCUST - Data unavailability challenge

https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

https://github.com/ethereum/research/wiki/A-note-on-data-availability-and-erasure-coding

“Optimistic Rollup” - Put all the data on-chain

commit(0x...) + encoding of txs

Use the Layer 1 as a data availability and dispute layer. Do not
perform any computations on the txs themselves.

Security & Incentive Compatibility
of Layer 2 games requirements*:
- liveness (somebody must challenge)
- expected reward of attacker <=0

*L2 games are implemented as deferred optimists:
https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84

https://medium.com/@decanus/optimistic-contracts-fb75efa7ca84

Secure iff challenge included before t0 + T

t0 + Tt0

Malicious
Exit

t1

Challenge
broadcast

t1 + D

Challenge
included

t1 + D < t0 + T → attack cancelled

Secure iff challenge included before t0 + T

t0 + Tt0

Malicious
Exit

t1

Challenge
broadcast

t1 + D

Challenge
included

t1 + D < t0 + T → attack cancelled

Insecure iff no challenge included before t0 + T

t0 + Tt0

Malicious
Exit

t1

Challenge
broadcast

t1 + D

Challenge
included

t1 + D > t0 + T → attack succeeds

Insecure iff no challenge included before t0 + T

t0 + Tt0

Malicious
Exit

t1

Challenge
broadcast

t1 + D

Challenge
included

t1 + D > t0 + T → attack succeeds

Safety condition: D <= T + t0 - t1 Liveness of
observers

Attacker Decision Flow

Malicious Exit

Attack Failed

Pay fee + bond

Attack Succeeds

+ Full bond refunded
+ Coin value

obtained
- Exit fee

Challenged No challenge

Attacker Decision Flow

Malicious Exit

Attack Failed

Losses cut Big losses

Pay fee + bond

Attack Succeeds

+ Full bond refunded
+ Coin value

obtained
- Exit fee

Challenged No challenge

Frontru
n

Frontrun fails

- 100% of bond lost
- Exit fee
- Challenge fee

- a% of bond refunded
- Exit fee
- Challenge fee

Incentive Compatibility of the Exit Game

No challenges = success:
● ↑ onchain congestion / censorship
● ↑ block withholding
● ↓ liveness of participants
● ↓ challenge period T

Large T = Secure but bad UX!

Incentive Compatibility of the Exit Game

Cost to Attack =
● Tx fees (constant)
● Fidelity Bond

(goes to challenger)

No challenges = success:
● ↑ onchain congestion / censorship
● ↑ block withholding
● ↓ liveness of participants
● ↓ challenge period T

Large T = Secure but bad UX!

Incentive Compatibility of the Exit Game

Cost to Attack =
● Tx fees (constant)
● Fidelity Bond

(goes to challenger)
Frontrunning removes bond

from cost if successful

No challenges = success:
● ↑ onchain congestion / censorship
● ↑ block withholding
● ↓ liveness of participants
● ↓ challenge period T

Large T = Secure but bad UX!
Attacker won’t frontrun
if nobody challenged

Incentive Compatibility of the Exit Game

Cost to Attack =
● Tx fees (constant)
● Fidelity Bond

(goes to challenger)

Burn part of the bond.

Frontrunning removes bond
from cost if successful

No challenges = success:
● ↑ onchain congestion / censorship
● ↑ block withholding
● ↓ liveness of participants
● ↓ challenge period T

Large T = Secure but bad UX!
Attacker won’t frontrun
if nobody challenged

Plasma Cash → Fixed-denomination.
Arbitrary denomination payments?

Plasma Cash + Channels = Plasma Debit

● Each coin is a channel with the operator

Example:

A has a 5/5 coin. B has a 0/5 coin. A can pay B by atomically decreasing

her coin by 1 and increasing B’s coin by 1. Capped liquidity. Also receiver

needs to sign the state update.

https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198

https://ethresear.ch/t/plasma-debit-arbitrary-denomination-payments-in-plasma-cash/2198

Plasma Cash + Fragmentation = Plasma Cashflow

1 Euro

Plasma Cash + Fragmentation = Plasma Cashflow

1 Euro range of 10 x 10 cent fragments

A non-interrupted range can be transferred in 1 tx

100

Alice

Bob

Alice transfers range [0,75) to Bob!

7550250

A non-interrupted range can be exited in 1 tx

100

Alice

Bob

Alice exits range [0,75)!

7550250

Any 1 coin inside the range is a valid challenge!

100

Alice

Bob

7550250

Challenge with 26!
Alice exits range [0,75)!

Defragmentation of ranges

https://twitter.com/_sgtn/status/1100357379760091137

100

Alice

Bob

Alice owns 2 ranges

7550250

Bob owns 1 range

https://twitter.com/_sgtn/status/1100357379760091137

Defragmentation of ranges

100

Alice

Bob

Alice owns 1 range!

Bob owns 1 range

7550250

https://ethresear.ch/t/plasma-cash-defragmentation/3410
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409

https://ethresear.ch/t/plasma-cash-defragmentation/3410
https://ethresear.ch/t/plasma-cash-minimal-atomic-swap/3409

Merkle Interval Tree
Inclusion / exclusion proofs for ranges w/ light client support!

https://www.youtube.com/watch?v=-8Jp7VjspQE

https://www.youtube.com/watch?v=-8Jp7VjspQE

